A Review of Life Prediction Methods for PEMFCs in Electric Vehicles
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Benaggoune, Khaled & Yue, Meiling & Jemei, Samir & Zerhouni, Noureddine, 2022. "A data-driven method for multi-step-ahead prediction and long-term prognostics of proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 313(C).
- Wang, Zhuo & Gladwin, Daniel T. & Smith, Matthew J. & Haass, Stefan, 2021. "Practical state estimation using Kalman filter methods for large-scale battery systems," Applied Energy, Elsevier, vol. 294(C).
- Ke Song & Yimin Wang & Xiao Hu & Jing Cao, 2020. "Online Prediction of Vehicular Fuel Cell Residual Lifetime Based on Adaptive Extended Kalman Filter," Energies, MDPI, vol. 13(23), pages 1-21, November.
- Liu, Hao & Chen, Jian & Hissel, Daniel & Su, Hongye, 2019. "Remaining useful life estimation for proton exchange membrane fuel cells using a hybrid method," Applied Energy, Elsevier, vol. 237(C), pages 910-919.
- Tianxiang Wang & Hongliang Zhou & Chengwei Zhu, 2022. "A Short-Term and Long-Term Prognostic Method for PEM Fuel Cells Based on Gaussian Process Regression," Energies, MDPI, vol. 15(13), pages 1-17, July.
- Wang, Chu & Li, Zhongliang & Outbib, Rachid & Dou, Manfeng & Zhao, Dongdong, 2022. "Symbolic deep learning based prognostics for dynamic operating proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 305(C).
- Chen, Kui & Laghrouche, Salah & Djerdir, Abdesslem, 2019. "Degradation model of proton exchange membrane fuel cell based on a novel hybrid method," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
- Xuexia Zhang & Zixuan Yu & Weirong Chen, 2019. "Life Prediction Based on D-S ELM for PEMFC," Energies, MDPI, vol. 12(19), pages 1-15, September.
- Zheng, Yuejiu & Cui, Yifan & Han, Xuebing & Ouyang, Minggao, 2021. "A capacity prediction framework for lithium-ion batteries using fusion prediction of empirical model and data-driven method," Energy, Elsevier, vol. 237(C).
- Li, Bing & Wan, Kechuang & Xie, Meng & Chu, Tiankuo & Wang, Xiaolei & Li, Xiang & Yang, Daijun & Ming, Pingwen & Zhang, Cunman, 2022. "Durability degradation mechanism and consistency analysis for proton exchange membrane fuel cell stack," Applied Energy, Elsevier, vol. 314(C).
- Chen, Kui & Laghrouche, Salah & Djerdir, Abdesslem, 2021. "Prognosis of fuel cell degradation under different applications using wavelet analysis and nonlinear autoregressive exogenous neural network," Renewable Energy, Elsevier, vol. 179(C), pages 802-814.
- Mezzi, Rania & Yousfi-Steiner, Nadia & Péra, Marie Cécile & Hissel, Daniel & Larger, Laurent, 2021. "An Echo State Network for fuel cell lifetime prediction under a dynamic micro-cogeneration load profile," Applied Energy, Elsevier, vol. 283(C).
- Yue, Meiling & Jemei, Samir & Zerhouni, Noureddine & Gouriveau, Rafael, 2021. "Proton exchange membrane fuel cell system prognostics and decision-making: Current status and perspectives," Renewable Energy, Elsevier, vol. 179(C), pages 2277-2294.
- Bressel, Mathieu & Hilairet, Mickael & Hissel, Daniel & Ould Bouamama, Belkacem, 2016. "Extended Kalman Filter for prognostic of Proton Exchange Membrane Fuel Cell," Applied Energy, Elsevier, vol. 164(C), pages 220-227.
- Ma, Rui & Yang, Tao & Breaz, Elena & Li, Zhongliang & Briois, Pascal & Gao, Fei, 2018. "Data-driven proton exchange membrane fuel cell degradation predication through deep learning method," Applied Energy, Elsevier, vol. 231(C), pages 102-115.
- Liu, Hao & Chen, Jian & Hissel, Daniel & Lu, Jianguo & Hou, Ming & Shao, Zhigang, 2020. "Prognostics methods and degradation indexes of proton exchange membrane fuel cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
- Chen, Kui & Badji, Abderrezak & Laghrouche, Salah & Djerdir, Abdesslem, 2022. "Polymer electrolyte membrane fuel cells degradation prediction using multi-kernel relevance vector regression and whale optimization algorithm," Applied Energy, Elsevier, vol. 318(C).
- Tabbi Wilberforce & Abdul Ghani Olabi, 2020. "Performance Prediction of Proton Exchange Membrane Fuel Cells (PEMFC) Using Adaptive Neuro Inference System (ANFIS)," Sustainability, MDPI, vol. 12(12), pages 1-16, June.
- Deng, Huiwen & Hu, Weihao & Cao, Di & Chen, Weirong & Huang, Qi & Chen, Zhe & Blaabjerg, Frede, 2022. "Degradation trajectories prognosis for PEM fuel cell systems based on Gaussian process regression," Energy, Elsevier, vol. 244(PA).
- Hua, Zhiguang & Zheng, Zhixue & Péra, Marie-Cécile & Gao, Fei, 2020. "Remaining useful life prediction of PEMFC systems based on the multi-input echo state network," Applied Energy, Elsevier, vol. 265(C).
- Kurnia, Jundika C. & Chaedir, Benitta A. & Sasmito, Agus P. & Shamim, Tariq, 2021. "Progress on open cathode proton exchange membrane fuel cell: Performance, designs, challenges and future directions," Applied Energy, Elsevier, vol. 283(C).
- Dimitrova, Zlatina & Nader, Wissam Bou, 2022. "PEM fuel cell as an auxiliary power unit for range extended hybrid electric vehicles," Energy, Elsevier, vol. 239(PA).
- Manik Mayur & Mathias Gerard & Pascal Schott & Wolfgang G. Bessler, 2018. "Lifetime Prediction of a Polymer Electrolyte Membrane Fuel Cell under Automotive Load Cycling Using a Physically-Based Catalyst Degradation Model," Energies, MDPI, vol. 11(8), pages 1-21, August.
- Yang, Bo & Guo, Zhengxun & Yang, Yi & Chen, Yijun & Zhang, Rui & Su, Keyi & Shu, Hongchun & Yu, Tao & Zhang, Xiaoshun, 2021. "Extreme learning machine based meta-heuristic algorithms for parameter extraction of solid oxide fuel cells," Applied Energy, Elsevier, vol. 303(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Shu Xiong & Jian Pan & Yucui Yang, 2022. "Robust Decoupling Vector Control of Interior Permanent Magnet Synchronous Motor Used in Electric Vehicles with Reduced Parameter Mismatch Impacts," Sustainability, MDPI, vol. 14(19), pages 1-16, September.
- Izadi, Mohammad Javad & Hassani, Pourya & Raeesi, Mehrdad & Ahmadi, Pouria, 2024. "A novel WaveNet-GRU deep learning model for PEM fuel cells degradation prediction based on transfer learning," Energy, Elsevier, vol. 293(C).
- Zhaowen Liang & Kai Liu & Jinjin Huang & Enfei Zhou & Chao Wang & Hui Wang & Qiong Huang & Zhenpo Wang, 2022. "Powertrain Design and Energy Management Strategy Optimization for a Fuel Cell Electric Intercity Coach in an Extremely Cold Mountain Area," Sustainability, MDPI, vol. 14(18), pages 1-16, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Huu-Linh Nguyen & Sang-Min Lee & Sangseok Yu, 2023. "A Comprehensive Review of Degradation Prediction Methods for an Automotive Proton Exchange Membrane Fuel Cell," Energies, MDPI, vol. 16(12), pages 1-32, June.
- Chen, Kui & Badji, Abderrezak & Laghrouche, Salah & Djerdir, Abdesslem, 2022. "Polymer electrolyte membrane fuel cells degradation prediction using multi-kernel relevance vector regression and whale optimization algorithm," Applied Energy, Elsevier, vol. 318(C).
- He, Wenbin & Liu, Ting & Ming, Wuyi & Li, Zongze & Du, Jinguang & Li, Xiaoke & Guo, Xudong & Sun, Peiyan, 2024. "Progress in prediction of remaining useful life of hydrogen fuel cells based on deep learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
- Deng, Zhihua & Chan, Siew Hwa & Chen, Qihong & Liu, Hao & Zhang, Liyan & Zhou, Keliang & Tong, Sirui & Fu, Zhichao, 2023. "Efficient degradation prediction of PEMFCs using ELM-AE based on fuzzy extension broad learning system," Applied Energy, Elsevier, vol. 331(C).
- Yang, Yang & Yu, Xiaoran & Zhu, Wenchao & Xie, Changjun & Zhao, Bo & Zhang, Leiqi & Shi, Ying & Huang, Liang & Zhang, Ruiming, 2023. "Degradation prediction of proton exchange membrane fuel cells with model uncertainty quantification," Renewable Energy, Elsevier, vol. 219(P2).
- Zhang, Chu & Hu, Haowen & Ji, Jie & Liu, Kang & Xia, Xin & Nazir, Muhammad Shahzad & Peng, Tian, 2023. "An evolutionary stacked generalization model based on deep learning and improved grasshopper optimization algorithm for predicting the remaining useful life of PEMFC," Applied Energy, Elsevier, vol. 330(PA).
- Song, Ke & Huang, Xing & Huang, Pengyu & Sun, Hui & Chen, Yuhui & Huang, Dongya, 2024. "Data-driven health state estimation and remaining useful life prediction of fuel cells," Renewable Energy, Elsevier, vol. 227(C).
- Tianxiang Wang & Hongliang Zhou & Chengwei Zhu, 2022. "A Short-Term and Long-Term Prognostic Method for PEM Fuel Cells Based on Gaussian Process Regression," Energies, MDPI, vol. 15(13), pages 1-17, July.
- Wang, Chu & Dou, Manfeng & Li, Zhongliang & Outbib, Rachid & Zhao, Dongdong & Zuo, Jian & Wang, Yuanlin & Liang, Bin & Wang, Peng, 2023. "Data-driven prognostics based on time-frequency analysis and symbolic recurrent neural network for fuel cells under dynamic load," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
- Liu, Hao & Chen, Jian & Hissel, Daniel & Lu, Jianguo & Hou, Ming & Shao, Zhigang, 2020. "Prognostics methods and degradation indexes of proton exchange membrane fuel cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
- Mezzi, Rania & Yousfi-Steiner, Nadia & Péra, Marie Cécile & Hissel, Daniel & Larger, Laurent, 2021. "An Echo State Network for fuel cell lifetime prediction under a dynamic micro-cogeneration load profile," Applied Energy, Elsevier, vol. 283(C).
- Wang, Chu & Li, Zhongliang & Outbib, Rachid & Dou, Manfeng & Zhao, Dongdong, 2022. "Symbolic deep learning based prognostics for dynamic operating proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 305(C).
- Li, Haolong & Chen, Qihong & Zhang, Liyan & Liu, Li & Xiao, Peng, 2023. "Degradation prediction of proton exchange membrane fuel cell based on the multi-inputs Bi-directional long short-term memory," Applied Energy, Elsevier, vol. 344(C).
- Tao, Zihan & Zhang, Chu & Xiong, Jinlin & Hu, Haowen & Ji, Jie & Peng, Tian & Nazir, Muhammad Shahzad, 2023. "Evolutionary gate recurrent unit coupling convolutional neural network and improved manta ray foraging optimization algorithm for performance degradation prediction of PEMFC," Applied Energy, Elsevier, vol. 336(C).
- Li, Changzhi & Lin, Wei & Wu, Hangyu & Li, Yang & Zhu, Wenchao & Xie, Changjun & Gooi, Hoay Beng & Zhao, Bo & Zhang, Leiqi, 2023. "Performance degradation decomposition-ensemble prediction of PEMFC using CEEMDAN and dual data-driven model," Renewable Energy, Elsevier, vol. 215(C).
- Xuan Meng & Jian Mei & Xingwang Tang & Jinhai Jiang & Chuanyu Sun & Kai Song, 2024. "The Degradation Prediction of Proton Exchange Membrane Fuel Cell Performance Based on a Transformer Model," Energies, MDPI, vol. 17(12), pages 1-13, June.
- Deng, Huiwen & Hu, Weihao & Cao, Di & Chen, Weirong & Huang, Qi & Chen, Zhe & Blaabjerg, Frede, 2022. "Degradation trajectories prognosis for PEM fuel cell systems based on Gaussian process regression," Energy, Elsevier, vol. 244(PA).
- Zhang, Zhendong & Wang, Ya-Xiong & He, Hongwen & Sun, Fengchun, 2021. "A short- and long-term prognostic associating with remaining useful life estimation for proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 304(C).
- Chen, Hong & Zhan, Zhigang & Jiang, Panxing & Sun, Yahao & Liao, Liwen & Wan, Xiongbiao & Du, Qing & Chen, Xiaosong & Song, Hao & Zhu, Ruijie & Shu, Zhanhong & Li, Shang & Pan, Mu, 2022. "Whole life cycle performance degradation test and RUL prediction research of fuel cell MEA," Applied Energy, Elsevier, vol. 310(C).
- Liu, Ze & Xu, Sichuan & Zhao, Honghui & Wang, Yupeng, 2022. "Durability estimation and short-term voltage degradation forecasting of vehicle PEMFC system: Development and evaluation of machine learning models," Applied Energy, Elsevier, vol. 326(C).
More about this item
Keywords
failure mechanisms; PEMFC; life prediction methods; dynamic vehicle conditions;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:16:p:9842-:d:884004. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.