IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v376y2024ipbs0306261924017082.html
   My bibliography  Save this article

Co-design of an unmanned cable shovel for structural and control integrated optimization: A highly heterogeneous constrained multi-objective optimization algorithm

Author

Listed:
  • Pang, Yong
  • Hu, Zhengguo
  • Zhang, Shuai
  • Guo, Guanchen
  • Song, Xueguan
  • Kan, Ziyun

Abstract

Unmanned cable shovel is an intelligence-based large machine used for excavating in open-pit coal mines, with significant implications for the security and development of energy resources. The co-design of unmanned cable shovels, considering elements from both structural and control systems, has demonstrated superior performance in obtaining optimal solutions compared to the traditional approaches that focus on individual systems. However, the inherent complexities of diverse systems often lead to heterogeneous function evaluations, posing challenges for the existing optimization algorithms. To address highly heterogeneous multi-objective optimization problems characterized by surrogate-approximated expensive functions and explicit inexpensive functions, this study proposes a highly heterogeneous constrained multi-objective optimization (HHCMO) algorithm. Leveraging NSGA-III as an evolutionary optimizer and the Kriging model for approximating expensive functions, HHCMO strategically addresses the challenges posed by highly heterogeneous objective evaluations. A Monte Carlo sampling-based expected hypervolume improvement (EHVI) criterion, employing a new nearest point approximation method in a unified sampling space, effectively handles the impact of heterogeneous objective evaluations on the sequential infill of the Kriging model. Thorough evaluations on both unconstrained and constrained multi-objective benchmark problems validate the correctness of HHCMO and its superiority relative to state-of-the-art algorithms. Finally, the effectiveness of the proposed method is successfully demonstrated in an engineering scenario of an unmanned cable shovel, where it adeptly handles expensive functions from the structural system and inexpensive functions from the control system.

Suggested Citation

  • Pang, Yong & Hu, Zhengguo & Zhang, Shuai & Guo, Guanchen & Song, Xueguan & Kan, Ziyun, 2024. "Co-design of an unmanned cable shovel for structural and control integrated optimization: A highly heterogeneous constrained multi-objective optimization algorithm," Applied Energy, Elsevier, vol. 376(PB).
  • Handle: RePEc:eee:appene:v:376:y:2024:i:pb:s0306261924017082
    DOI: 10.1016/j.apenergy.2024.124325
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924017082
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124325?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:376:y:2024:i:pb:s0306261924017082. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.