IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v105y2017icp407-418.html
   My bibliography  Save this article

Energy management control strategy to improve the FC/SC dynamic behavior on hybrid electric vehicles: A frequency based distribution

Author

Listed:
  • Sandoval, Cinda
  • Alvarado, Victor M.
  • Carmona, Jean-Claude
  • Lopez Lopez, Guadalupe
  • Gomez-Aguilar, J.F.

Abstract

This paper presents a breakthrough energy management strategy developed to coordinate a hybrid power supply system for typical solicitations of electric vehicles, but the whole system is scaled to a maximum power of 1.2 kW. The system is composed of a polymer electrolyte membrane fuel cell (PEMFC), a supercapacitor (SC) bank and their respective power conditioning units. The proposed strategy is organized in three hierarchical levels for treating the problems of: (i) global control, (ii) power demand split and supercapacitor state of charge (SOC) preservation, and (iii) interaction between power conditioning units and the sources. The power split is determined in real time with a basis on a frequency distribution, for which a cutoff frequency is defined in agreement with the dynamical capabilities of the sources. The focus is then, to use basic dynamic measurements of an experimental PEMFC module in order to integrate a simulation environment that allows analyzing the interactions and performances of the power train components and the regulation architecture under different scenarios. Results demonstrate that the strategy allows regulating the DC bus voltage under different load profiles; preserving the SC SOC within the recommended range; operating the PEMFC all over the safe region; and diminishing the FC start-ups and shutdowns.

Suggested Citation

  • Sandoval, Cinda & Alvarado, Victor M. & Carmona, Jean-Claude & Lopez Lopez, Guadalupe & Gomez-Aguilar, J.F., 2017. "Energy management control strategy to improve the FC/SC dynamic behavior on hybrid electric vehicles: A frequency based distribution," Renewable Energy, Elsevier, vol. 105(C), pages 407-418.
  • Handle: RePEc:eee:renene:v:105:y:2017:i:c:p:407-418
    DOI: 10.1016/j.renene.2016.12.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116310771
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.12.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Hengbing & Burke, Andy, 2010. "Fuel Cell Powered Vehicles Using Supercapacitors: Device Characteristics, Control Strategies, and Simulation Results," Institute of Transportation Studies, Working Paper Series qt23w1m5bb, Institute of Transportation Studies, UC Davis.
    2. Lagorse, Jeremy & Paire, Damien & Miraoui, Abdellatif, 2009. "Sizing optimization of a stand-alone street lighting system powered by a hybrid system using fuel cell, PV and battery," Renewable Energy, Elsevier, vol. 34(3), pages 683-691.
    3. Ettihir, K. & Boulon, L. & Agbossou, K., 2016. "Optimization-based energy management strategy for a fuel cell/battery hybrid power system," Applied Energy, Elsevier, vol. 163(C), pages 142-153.
    4. Feroldi, Diego & Rullo, Pablo & Zumoffen, David, 2015. "Energy management strategy based on receding horizon for a power hybrid system," Renewable Energy, Elsevier, vol. 75(C), pages 550-559.
    5. Olatomiwa, Lanre & Mekhilef, Saad & Ismail, M.S. & Moghavvemi, M., 2016. "Energy management strategies in hybrid renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 821-835.
    6. Tie, Siang Fui & Tan, Chee Wei, 2013. "A review of energy sources and energy management system in electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 82-102.
    7. Lee, Sang C. & Kwon, Osung & Thomas, Sobi & Park, Sam & Choi, Gyeung-Ho, 2014. "Graphical and mathematical analysis of fuel cell/battery passive hybridization with K factors," Applied Energy, Elsevier, vol. 114(C), pages 135-145.
    8. Iqbal, M.T, 2003. "Simulation of a small wind fuel cell hybrid energy system," Renewable Energy, Elsevier, vol. 28(4), pages 511-522.
    9. Adi, Vincentius Surya Kurnia & Chang, Chuei–Tin, 2015. "Development of flexible designs for PVFC hybrid power systems," Renewable Energy, Elsevier, vol. 74(C), pages 176-186.
    10. Ming-Hui Chang & Han-Pang Huang & Shu-Wei Chang, 2013. "A New State of Charge Estimation Method for LiFePO 4 Battery Packs Used in Robots," Energies, MDPI, vol. 6(4), pages 1-24, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jamila Snoussi & Seifeddine Ben Elghali & Mohamed Benbouzid & Mohamed Faouzi Mimouni, 2018. "Auto-Adaptive Filtering-Based Energy Management Strategy for Fuel Cell Hybrid Electric Vehicles," Energies, MDPI, vol. 11(8), pages 1-20, August.
    2. Kréhi Serge Agbli & Mickaël Hilairet & Frédéric Gustin, 2020. "Real-Time Control Based on a CAN-Bus of Hybrid Electrical Systems," Energies, MDPI, vol. 13(17), pages 1-14, September.
    3. Balali, Yasaman & Stegen, Sascha, 2021. "Review of energy storage systems for vehicles based on technology, environmental impacts, and costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    4. Kadri, Ameni & Marzougui, Hajer & Aouiti, Abdelkrim & Bacha, Faouzi, 2020. "Energy management and control strategy for a DFIG wind turbine/fuel cell hybrid system with super capacitor storage system," Energy, Elsevier, vol. 192(C).
    5. Lopez Lopez, Guadalupe & Schacht Rodriguez, Ricardo & Alvarado, Victor M. & Gomez-Aguilar, J.F. & Mota, Juan E. & Sandoval, Cinda, 2017. "Hybrid PEMFC-supercapacitor system: Modeling and energy management in energetic macroscopic representation," Applied Energy, Elsevier, vol. 205(C), pages 1478-1494.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lopez Lopez, Guadalupe & Schacht Rodriguez, Ricardo & Alvarado, Victor M. & Gomez-Aguilar, J.F. & Mota, Juan E. & Sandoval, Cinda, 2017. "Hybrid PEMFC-supercapacitor system: Modeling and energy management in energetic macroscopic representation," Applied Energy, Elsevier, vol. 205(C), pages 1478-1494.
    2. Alan Cruz Rojas & Guadalupe Lopez Lopez & J. F. Gomez-Aguilar & Victor M. Alvarado & Cinda Luz Sandoval Torres, 2017. "Control of the Air Supply Subsystem in a PEMFC with Balance of Plant Simulation," Sustainability, MDPI, vol. 9(1), pages 1-23, January.
    3. Bizon, Nicu, 2019. "Real-time optimization strategies of Fuel Cell Hybrid Power Systems based on Load-following control: A new strategy, and a comparative study of topologies and fuel economy obtained," Applied Energy, Elsevier, vol. 241(C), pages 444-460.
    4. Bizon, Nicu, 2019. "Efficient fuel economy strategies for the Fuel Cell Hybrid Power Systems under variable renewable/load power profile," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    5. Nicu Bizon & Alin Gheorghita Mazare & Laurentiu Mihai Ionescu & Phatiphat Thounthong & Erol Kurt & Mihai Oproescu & Gheorghe Serban & Ioan Lita, 2019. "Better Fuel Economy by Optimizing Airflow of the Fuel Cell Hybrid Power Systems Using Fuel Flow-Based Load-Following Control," Energies, MDPI, vol. 12(14), pages 1-17, July.
    6. Bizon, Nicu, 2019. "Fuel saving strategy using real-time switching of the fueling regulators in the proton exchange membrane fuel cell system," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    7. Nicu Bizon & Mihai Oproescu, 2018. "Experimental Comparison of Three Real-Time Optimization Strategies Applied to Renewable/FC-Based Hybrid Power Systems Based on Load-Following Control," Energies, MDPI, vol. 11(12), pages 1-32, December.
    8. Feroldi, Diego & Carignano, Mauro, 2016. "Sizing for fuel cell/supercapacitor hybrid vehicles based on stochastic driving cycles," Applied Energy, Elsevier, vol. 183(C), pages 645-658.
    9. Nicu Bizon & Phatiphat Thounthong, 2021. "A Simple and Safe Strategy for Improving the Fuel Economy of a Fuel Cell Vehicle," Mathematics, MDPI, vol. 9(6), pages 1-29, March.
    10. Bizon, Nicu, 2017. "Energy optimization of fuel cell system by using global extremum seeking algorithm," Applied Energy, Elsevier, vol. 206(C), pages 458-474.
    11. Bizon, Nicu & Thounthong, Phatiphat, 2018. "Real-time strategies to optimize the fueling of the fuel cell hybrid power source: A review of issues, challenges and a new approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1089-1102.
    12. Saiteja, Pemmareddy & Ashok, B., 2022. "Critical review on structural architecture, energy control strategies and development process towards optimal energy management in hybrid vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    13. Zbysław Dobrowolski & Łukasz Sułkowski & Wiesław Danielak, 2021. "Management of Waste Batteries and Accumulators: Quest of European Union Goals," Energies, MDPI, vol. 14(19), pages 1-12, October.
    14. Hemmati, Reza & Saboori, Hedayat, 2016. "Emergence of hybrid energy storage systems in renewable energy and transport applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 11-23.
    15. Chukwuma Ogbonnaya & Chamil Abeykoon & Adel Nasser & Ali Turan & Cyril Sunday Ume, 2021. "Prospects of Integrated Photovoltaic-Fuel Cell Systems in a Hydrogen Economy: A Comprehensive Review," Energies, MDPI, vol. 14(20), pages 1-33, October.
    16. Nicu Bizon & Valentin Alexandru Stan & Angel Ciprian Cormos, 2019. "Optimization of the Fuel Cell Renewable Hybrid Power System Using the Control Mode of the Required Load Power on the DC Bus," Energies, MDPI, vol. 12(10), pages 1-15, May.
    17. Du, Jiuyu & Ouyang, Danhua, 2017. "Progress of Chinese electric vehicles industrialization in 2015: A review," Applied Energy, Elsevier, vol. 188(C), pages 529-546.
    18. Baresch, Martin & Moser, Simon, 2019. "Allocation of e-car charging: Assessing the utilization of charging infrastructures by location," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 388-395.
    19. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M., 2017. "Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 268-291.
    20. Nyong-Bassey, Bassey Etim & Giaouris, Damian & Patsios, Charalampos & Papadopoulou, Simira & Papadopoulos, Athanasios I. & Walker, Sara & Voutetakis, Spyros & Seferlis, Panos & Gadoue, Shady, 2020. "Reinforcement learning based adaptive power pinch analysis for energy management of stand-alone hybrid energy storage systems considering uncertainty," Energy, Elsevier, vol. 193(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:105:y:2017:i:c:p:407-418. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.