IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v279y2020ics0306261920312137.html
   My bibliography  Save this article

Simulation-based optimization framework for economic operations of autonomous electric taxicab considering battery aging

Author

Listed:
  • Yao, Jiwei
  • You, Fengqi

Abstract

This paper proposes a simulation-based optimization framework for an autonomous electric taxi (AET) to achieve economic optimization by determining the optimal operations in the operating time horizon. The operating time horizon of the AET is equally divided into a set of consecutive time slots. For each time slot, there are four possible operations: driving, cruising, parking, and charging. To reduce the computational complexity, instead of solving the scheduling problem for the whole operating time horizon as a single problem, the whole problem is decomposed into a set of subproblems that are built for a one-day period. From an integrated electric vehicle simulation model, which simulates the AET operation based on the optimal schedule determined by the optimization problem, precise battery status parameters, such as the state of charge, capacity loss and battery temperature, are derived and used as the initial values for the optimization problem with rolling horizon implementation. A case study on NYC is presented, and the results show that the proposed framework can extend the battery life by 3%, and also increase the daily profit by 3% and 520%, compared to the 24hr rule-based strategy and 8hr rule-based strategy, respectively.

Suggested Citation

  • Yao, Jiwei & You, Fengqi, 2020. "Simulation-based optimization framework for economic operations of autonomous electric taxicab considering battery aging," Applied Energy, Elsevier, vol. 279(C).
  • Handle: RePEc:eee:appene:v:279:y:2020:i:c:s0306261920312137
    DOI: 10.1016/j.apenergy.2020.115721
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920312137
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115721?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Cheng & Yang, Fan & Ke, Xinyou & Liu, Zhifeng & Yuan, Chris, 2019. "Predictive modeling of energy consumption and greenhouse gas emissions from autonomous electric vehicle operations," Applied Energy, Elsevier, vol. 254(C).
    2. Fotouhi, Abbas & Auger, Daniel J. & Propp, Karsten & Longo, Stefano & Wild, Mark, 2016. "A review on electric vehicle battery modelling: From Lithium-ion toward Lithium–Sulphur," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1008-1021.
    3. Wang, Hewu & Zhang, Xiaobin & Ouyang, Minggao, 2015. "Energy consumption of electric vehicles based on real-world driving patterns: A case study of Beijing," Applied Energy, Elsevier, vol. 157(C), pages 710-719.
    4. Tu, Wei & Santi, Paolo & Zhao, Tianhong & He, Xiaoyi & Li, Qingquan & Dong, Lei & Wallington, Timothy J. & Ratti, Carlo, 2019. "Acceptability, energy consumption, and costs of electric vehicle for ride-hailing drivers in Beijing," Applied Energy, Elsevier, vol. 250(C), pages 147-160.
    5. Rao, Zhonghao & Wang, Shuangfeng, 2011. "A review of power battery thermal energy management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4554-4571.
    6. Fangru Wang & Catherine L. Ross, 2019. "New potential for multimodal connection: exploring the relationship between taxi and transit in New York City (NYC)," Transportation, Springer, vol. 46(3), pages 1051-1072, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Iqbal, Mehroze & Becherif, Mohamed & Ramadan, Haitham S. & Badji, Abderrezak, 2021. "Dual-layer approach for systematic sizing and online energy management of fuel cell hybrid vehicles," Applied Energy, Elsevier, vol. 300(C).
    2. Badji, Abderrezak & Abdeslam, Djaffar Ould & Chabane, Djafar & Benamrouche, Nacereddine, 2022. "Real-time implementation of improved power frequency approach based energy management of fuel cell electric vehicle considering storage limitations," Energy, Elsevier, vol. 249(C).
    3. Hu, Zhangchen & Chen, Heng & Lyons, Eric & Solak, Senay & Zink, Michael, 2024. "Towards sustainable UAV operations: Balancing economic optimization with environmental and social considerations in path planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 181(C).
    4. Zhan, Xingbin & Szeto, W.Y. & (Michael) Chen, Xiqun, 2022. "A simulation–optimization framework for a dynamic electric ride-hailing sharing problem with a novel charging strategy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    5. Zhaowen Liang & Kai Liu & Jinjin Huang & Enfei Zhou & Chao Wang & Hui Wang & Qiong Huang & Zhenpo Wang, 2022. "Powertrain Design and Energy Management Strategy Optimization for a Fuel Cell Electric Intercity Coach in an Extremely Cold Mountain Area," Sustainability, MDPI, vol. 14(18), pages 1-16, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Di Martino & Seyed Mahdi Miraftabzadeh & Michela Longo, 2022. "Strategies for the Modelisation of Electric Vehicle Energy Consumption: A Review," Energies, MDPI, vol. 15(21), pages 1-20, October.
    2. Cui, Yuepeng & Xu, Hao & Zou, Fumin & Chen, Zhihui & Gong, Kuangmin, 2021. "Optimization based method to develop representative driving cycle for real-world fuel consumption estimation," Energy, Elsevier, vol. 235(C).
    3. Zhang, Jin & Wang, Zhenpo & Liu, Peng & Zhang, Zhaosheng, 2020. "Energy consumption analysis and prediction of electric vehicles based on real-world driving data," Applied Energy, Elsevier, vol. 275(C).
    4. Zhao, Yinan & Wen, Yifan & Wang, Fang & Tu, Wei & Zhang, Shaojun & Wu, Ye & Hao, Jiming, 2023. "Feasibility, economic and carbon reduction benefits of ride-hailing vehicle electrification by coupling travel trajectory and charging infrastructure data," Applied Energy, Elsevier, vol. 342(C).
    5. Mohammed, Abubakar Gambo & Elfeky, Karem Elsayed & Wang, Qiuwang, 2022. "Recent advancement and enhanced battery performance using phase change materials based hybrid battery thermal management for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    6. Luna, M. & Di Piazza, M.C. & La Tona, G. & Accetta, A. & Pucci, M., 2021. "Exploiting dynamic modeling, parameter identification, and power electronics to implement a non-dissipative Li-ion battery hardware emulator," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 183(C), pages 48-65.
    7. Alexander Koch & Lorenzo Nicoletti & Thomas Herrmann & Markus Lienkamp, 2022. "Implementation and Analyses of an Eco-Driving Algorithm for Different Battery Electric Powertrain Topologies Based on a Split Loss Integration Approach," Energies, MDPI, vol. 15(15), pages 1-29, July.
    8. Shi, Xiao & Pan, Jian & Wang, Hewu & Cai, Hua, 2019. "Battery electric vehicles: What is the minimum range required?," Energy, Elsevier, vol. 166(C), pages 352-358.
    9. Xiaohan Fang & Jinkuan Wang & Guanru Song & Yinghua Han & Qiang Zhao & Zhiao Cao, 2019. "Multi-Agent Reinforcement Learning Approach for Residential Microgrid Energy Scheduling," Energies, MDPI, vol. 13(1), pages 1-26, December.
    10. Zhang, Haoran & Chen, Jinyu & Li, Wenjing & Song, Xuan & Shibasaki, Ryosuke, 2020. "Mobile phone GPS data in urban ride-sharing: An assessment method for emission reduction potential," Applied Energy, Elsevier, vol. 269(C).
    11. Rui Yao & Kenan Zhang, 2023. "How would mobility-as-a-service (MaaS) platform survive as an intermediary? From the viewpoint of stability in many-to-many matching," Papers 2310.08285, arXiv.org.
    12. Ling, Ziye & Wang, Fangxian & Fang, Xiaoming & Gao, Xuenong & Zhang, Zhengguo, 2015. "A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling," Applied Energy, Elsevier, vol. 148(C), pages 403-409.
    13. Chen, Ruihua & Zhao, Ruikai & Deng, Shuai & Zhao, Li & Xu, Weicong, 2021. "A cycle research methodology for thermo-chemical engines: From ideal cycle to case study," Energy, Elsevier, vol. 228(C).
    14. Zhou, Zhizuan & Wang, Dong & Peng, Yang & Li, Maoyu & Wang, Boxuan & Cao, Bei & Yang, Lizhong, 2022. "Experimental study on the thermal management performance of phase change material module for the large format prismatic lithium-ion battery," Energy, Elsevier, vol. 238(PC).
    15. Kirtonia, Sajeeb & Sun, Yanshuo, 2022. "Evaluating rail transit's comparative advantages in travel cost and time over taxi with open data in two U.S. cities," Transport Policy, Elsevier, vol. 115(C), pages 75-87.
    16. Shi You & Junjie Hu & Charalampos Ziras, 2016. "An Overview of Modeling Approaches Applied to Aggregation-Based Fleet Management and Integration of Plug-in Electric Vehicles †," Energies, MDPI, vol. 9(11), pages 1-18, November.
    17. Zhang, Zhenying & Wang, Jiayu & Feng, Xu & Chang, Li & Chen, Yanhua & Wang, Xingguo, 2018. "The solutions to electric vehicle air conditioning systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 443-463.
    18. Vítor JPD Martinho, 2018. "A transversal perspective on global energy production and consumption: An approach based on convergence theory," Energy & Environment, , vol. 29(4), pages 556-575, June.
    19. Raoul Rothfeld & Mengying Fu & Miloš Balać & Constantinos Antoniou, 2021. "Potential Urban Air Mobility Travel Time Savings: An Exploratory Analysis of Munich, Paris, and San Francisco," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    20. Arias, Mariz B. & Bae, Sungwoo, 2016. "Electric vehicle charging demand forecasting model based on big data technologies," Applied Energy, Elsevier, vol. 183(C), pages 327-339.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:279:y:2020:i:c:s0306261920312137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.