IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i3p1135-d485296.html
   My bibliography  Save this article

Joint Optimization of Intersection Control and Trajectory Planning Accounting for Pedestrians in a Connected and Automated Vehicle Environment

Author

Listed:
  • Biao Yin

    (Laboratoire Ville Mobilité Transport, École des Ponts ParisTech, 77455 Marne-la-Vallée CEDEX 2, France
    Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates)

  • Monica Menendez

    (Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates)

  • Kaidi Yang

    (Department of Aeronautics and Astronautics, Stanford University, Stanford, CA 94305, USA)

Abstract

Connected and automated vehicle (CAV) technology makes it possible to track and control the movement of vehicles, thus providing enormous potential to improve intersection operations. In this paper, we study the traffic signal control problem at an isolated intersection in a CAV environment, considering mixed traffic including various types of vehicles and pedestrians. Both the vehicle delay and the pedestrian delay are incorporated into the model formulation. This introduces some additional complexity, as any benefits to pedestrians will come at the expense of higher delays for the vehicles. Thus, some valid questions we answer in this paper are as follows: Under which circumstances could we provide priority to pedestrians without over penalizing the vehicles at the intersection? How important are the connectivity and autonomy associated with CAV technology in this context? What type of signal control algorithm could be used to minimize person delay accounting for both vehicles and pedestrians? How could it be solved efficiently? To address these questions, we present a model that optimizes signal control (i.e., vehicle departure sequence), automated vehicle trajectories, and the treatment of pedestrian crossing. In each decision step, the weighted sum of the vehicle delay and the pedestrian delay (e.g., the total person delay) is minimized by the joint optimization on the basis of the predicted departure sequences of vehicles and pedestrians. Moreover, a near-optimal solution of the integrated problem is obtained with an ant colony system algorithm, which is computationally very efficient. Simulations are conducted for different demand scenarios and different CAV penetration rates. The performance of the proposed algorithm in terms of the average person delay is investigated. The simulation results show that the proposed algorithm has potential to reduce the delay compared to an actuated signal control method. Moreover, in comparison to a CAV-based signal control that does not account for the pedestrian delay, the joint optimization proposed here can achieve improvement in the low- and moderate-vehicle-demand scenarios.

Suggested Citation

  • Biao Yin & Monica Menendez & Kaidi Yang, 2021. "Joint Optimization of Intersection Control and Trajectory Planning Accounting for Pedestrians in a Connected and Automated Vehicle Environment," Sustainability, MDPI, vol. 13(3), pages 1-25, January.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:3:p:1135-:d:485296
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/3/1135/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/3/1135/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ishaque, Muhammad Moazzam & Noland, Robert B., 2007. "Trade-offs between vehicular and pedestrian traffic using micro-simulation methods," Transport Policy, Elsevier, vol. 14(2), pages 124-138, March.
    2. Li, Xiang & Sun, Jian-Qiao, 2016. "Effects of vehicle–pedestrian interaction and speed limit on traffic performance of intersections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 335-347.
    3. Ge, Qiao & Menendez, Monica, 2017. "Extending Morris method for qualitative global sensitivity analysis of models with dependent inputs," Reliability Engineering and System Safety, Elsevier, vol. 162(C), pages 28-39.
    4. Yu, Chunhui & Ma, Wanjing & Han, Ke & Yang, Xiaoguang, 2017. "Optimization of vehicle and pedestrian signals at isolated intersections," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 135-153.
    5. Newell, G. F., 2002. "A simplified car-following theory: a lower order model," Transportation Research Part B: Methodological, Elsevier, vol. 36(3), pages 195-205, March.
    6. Li, Li & Jabari, Saif Eddin, 2019. "Position weighted backpressure intersection control for urban networks," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 435-461.
    7. Ge, Qiao & Ciuffo, Biagio & Menendez, Monica, 2015. "Combining screening and metamodel-based methods: An efficient sequential approach for the sensitivity analysis of model outputs," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 334-344.
    8. Yu, Chunhui & Feng, Yiheng & Liu, Henry X. & Ma, Wanjing & Yang, Xiaoguang, 2018. "Integrated optimization of traffic signals and vehicle trajectories at isolated urban intersections," Transportation Research Part B: Methodological, Elsevier, vol. 112(C), pages 89-112.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saeed Vasebi & Yeganeh M. Hayeri, 2021. "Collective Driving to Mitigate Climate Change: Collective-Adaptive Cruise Control," Sustainability, MDPI, vol. 13(16), pages 1-30, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Jing & Knoop, Victor L. & Wang, Meng, 2020. "Two-dimensional vehicular movement modelling at intersections based on optimal control," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 1-22.
    2. Yu, Chunhui & Ma, Wanjing & Yang, Xiaoguang, 2020. "A time-slot based signal scheme model for fixed-time control at isolated intersections," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 176-192.
    3. Cui, Shaohua & Xue, Yongjie & Gao, Kun & Wang, Kai & Yu, Bin & Qu, Xiaobo, 2024. "Delay-throughput tradeoffs for signalized networks with finite queue capacity," Transportation Research Part B: Methodological, Elsevier, vol. 180(C).
    4. Dakic, Igor & Yang, Kaidi & Menendez, Monica & Chow, Joseph Y.J., 2021. "On the design of an optimal flexible bus dispatching system with modular bus units: Using the three-dimensional macroscopic fundamental diagram," Transportation Research Part B: Methodological, Elsevier, vol. 148(C), pages 38-59.
    5. Mohebifard, Rasool & Hajbabaie, Ali, 2019. "Optimal network-level traffic signal control: A benders decomposition-based solution algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 252-274.
    6. Cao, Jin & Menendez, Monica, 2018. "Quantification of potential cruising time savings through intelligent parking services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 151-165.
    7. Jin Cao & Monica Menendez & Rashid Waraich, 2019. "Impacts of the urban parking system on cruising traffic and policy development: the case of Zurich downtown area, Switzerland," Transportation, Springer, vol. 46(3), pages 883-908, June.
    8. Lu, Gongyuan & Shen, Zili & Liu, Xiaobo & Nie, Yu (Marco) & Xiong, Zhiqiang, 2022. "Are autonomous vehicles better off without signals at intersections? A comparative computational study," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 26-46.
    9. Li, Li & Jabari, Saif Eddin, 2019. "Position weighted backpressure intersection control for urban networks," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 435-461.
    10. Mohajerpoor, Reza & Saberi, Meead & Ramezani, Mohsen, 2019. "Analytical derivation of the optimal traffic signal timing: Minimizing delay variability and spillback probability for undersaturated intersections," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 45-68.
    11. Shi, Wen & Chen, Xi, 2019. "Controlled Morris method: A new factor screening approach empowered by a distribution-free sequential multiple testing procedure," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 299-314.
    12. Yu, Chunhui & Sun, Weili & Liu, Henry X. & Yang, Xiaoguang, 2019. "Managing connected and automated vehicles at isolated intersections: From reservation- to optimization-based methods," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 416-435.
    13. Zhu, Chenqiang & Zhong, Shiquan & Li, Guangyu & Ma, Shoufeng, 2017. "New control strategy for the lattice hydrodynamic model of traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 445-453.
    14. Seo, Toru & Kawasaki, Yutaka & Kusakabe, Takahiko & Asakura, Yasuo, 2019. "Fundamental diagram estimation by using trajectories of probe vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 40-56.
    15. Laval, Jorge A. & Toth, Christopher S. & Zhou, Yi, 2014. "A parsimonious model for the formation of oscillations in car-following models," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 228-238.
    16. Piyapong Suwanno & Chaiwat Yaibok & Noriyasu Tsumita & Atsushi Fukuda & Kestsirin Theerathitichaipa & Manlika Seefong & Sajjakaj Jomnonkwao & Rattanaporn Kasemsri, 2023. "Estimation of the Evacuation Time According to Different Flood Depths," Sustainability, MDPI, vol. 15(7), pages 1-23, April.
    17. Huanping Li & Jian Wang & Guopeng Bai & Xiaowei Hu, 2021. "Exploring the Distribution of Traffic Flow for Shared Human and Autonomous Vehicle Roads," Energies, MDPI, vol. 14(12), pages 1-21, June.
    18. Gong, Siyuan & Du, Lili, 2018. "Cooperative platoon control for a mixed traffic flow including human drive vehicles and connected and autonomous vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 116(C), pages 25-61.
    19. Shang, Xiaobing & Su, Li & Fang, Hai & Zeng, Bowen & Zhang, Zhi, 2023. "An efficient multi-fidelity Kriging surrogate model-based method for global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    20. Saif Eddin Jabari & Laura Wynter, 2016. "Sensor placement with time-to-detection guarantees," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 5(4), pages 415-433, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:3:p:1135-:d:485296. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.