IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v162y2017icp28-39.html
   My bibliography  Save this article

Extending Morris method for qualitative global sensitivity analysis of models with dependent inputs

Author

Listed:
  • Ge, Qiao
  • Menendez, Monica

Abstract

Global Sensitivity Analysis (GSA) can help modelers to better understand the model and manage the uncertainty. However, when the model itself is rather sophisticated, especially when dependence exists among model inputs, it could be difficult or even unfeasible to perform quantitative GSA directly. In this paper, a non-parametric approach is proposed for screening model inputs. It extends the classic Elementary Effects (i.e., Morris) method, which is widely used for screening independent inputs, to enable the screening of dependent model inputs. The performance of the proposed method is tested with three numerical experiments, and the results are cross-compared with those from the variance-based GSA.

Suggested Citation

  • Ge, Qiao & Menendez, Monica, 2017. "Extending Morris method for qualitative global sensitivity analysis of models with dependent inputs," Reliability Engineering and System Safety, Elsevier, vol. 162(C), pages 28-39.
  • Handle: RePEc:eee:reensy:v:162:y:2017:i:c:p:28-39
    DOI: 10.1016/j.ress.2017.01.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832017300625
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2017.01.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kucherenko, S. & Rodriguez-Fernandez, M. & Pantelides, C. & Shah, N., 2009. "Monte Carlo evaluation of derivative-based global sensitivity measures," Reliability Engineering and System Safety, Elsevier, vol. 94(7), pages 1135-1148.
    2. Morris, David J. & Speirs, Douglas C. & Cameron, Angus I. & Heath, Michael R., 2014. "Global sensitivity analysis of an end-to-end marine ecosystem model of the North Sea: Factors affecting the biomass of fish and benthos," Ecological Modelling, Elsevier, vol. 273(C), pages 251-263.
    3. Borgonovo, E., 2007. "A new uncertainty importance measure," Reliability Engineering and System Safety, Elsevier, vol. 92(6), pages 771-784.
    4. Frédéric Branger & Louis-Gaëtan Giraudet & Céline Guivarch & Philippe Quirion, 2015. "Global sensitivity analysis of an energy-economy model of the residential building sector," Policy Papers 2015.01, FAERE - French Association of Environmental and Resource Economists.
    5. Lamboni, M. & Iooss, B. & Popelin, A.-L. & Gamboa, F., 2013. "Derivative-based global sensitivity measures: General links with Sobol’ indices and numerical tests," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 87(C), pages 45-54.
    6. Saltelli A. & Tarantola S., 2002. "On the Relative Importance of Input Factors in Mathematical Models: Safety Assessment for Nuclear Waste Disposal," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 702-709, September.
    7. Mara, Thierry A. & Tarantola, Stefano, 2012. "Variance-based sensitivity indices for models with dependent inputs," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 115-121.
    8. Jeremy E. Oakley & Anthony O'Hagan, 2004. "Probabilistic sensitivity analysis of complex models: a Bayesian approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(3), pages 751-769, August.
    9. Saltelli, Andrea & Campolongo, Francesca & Cariboni, Jessica, 2009. "Screening important inputs in models with strong interaction properties," Reliability Engineering and System Safety, Elsevier, vol. 94(7), pages 1149-1155.
    10. Sobol’, I.M. & Kucherenko, S., 2009. "Derivative based global sensitivity measures and their link with global sensitivity indices," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(10), pages 3009-3017.
    11. Xu, Chonggang & Gertner, George Zdzislaw, 2008. "Uncertainty and sensitivity analysis for models with correlated parameters," Reliability Engineering and System Safety, Elsevier, vol. 93(10), pages 1563-1573.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jin Cao & Monica Menendez & Rashid Waraich, 2019. "Impacts of the urban parking system on cruising traffic and policy development: the case of Zurich downtown area, Switzerland," Transportation, Springer, vol. 46(3), pages 883-908, June.
    2. Vuillod, Bruno & Montemurro, Marco & Panettieri, Enrico & Hallo, Ludovic, 2023. "A comparison between Sobol’s indices and Shapley’s effect for global sensitivity analysis of systems with independent input variables," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    3. Shang, Xiaobing & Su, Li & Fang, Hai & Zeng, Bowen & Zhang, Zhi, 2023. "An efficient multi-fidelity Kriging surrogate model-based method for global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    4. Cao, Jin & Menendez, Monica, 2018. "Quantification of potential cruising time savings through intelligent parking services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 151-165.
    5. Dakic, Igor & Yang, Kaidi & Menendez, Monica & Chow, Joseph Y.J., 2021. "On the design of an optimal flexible bus dispatching system with modular bus units: Using the three-dimensional macroscopic fundamental diagram," Transportation Research Part B: Methodological, Elsevier, vol. 148(C), pages 38-59.
    6. Dakic, Igor & Leclercq, Ludovic & Menendez, Monica, 2021. "On the optimization of the bus network design: An analytical approach based on the three-dimensional macroscopic fundamental diagram," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 393-417.
    7. Shi, Wen & Zhou, Qing & Zhou, Yanju, 2023. "An efficient elementary effect-based method for sensitivity analysis in identifying main and two-factor interaction effects," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    8. Mara, Thierry A. & Becker, William E., 2021. "Polynomial chaos expansion for sensitivity analysis of model output with dependent inputs," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    9. Shi, Wen & Chen, Xi, 2019. "Controlled Morris method: A new factor screening approach empowered by a distribution-free sequential multiple testing procedure," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 299-314.
    10. Biao Yin & Monica Menendez & Kaidi Yang, 2021. "Joint Optimization of Intersection Control and Trajectory Planning Accounting for Pedestrians in a Connected and Automated Vehicle Environment," Sustainability, MDPI, vol. 13(3), pages 1-25, January.
    11. Cheng, Jin & Wang, Jian & Wu, Xuezhou & Wang, Shuo, 2019. "An improved polynomial-based nonlinear variable importance measure and its application to degradation assessment for high-voltage transformer under imbalance data," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 175-191.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Pengfei & Lu, Zhenzhou & Song, Jingwen, 2015. "Variable importance analysis: A comprehensive review," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 399-432.
    2. Sinan Xiao & Zhenzhou Lu & Pan Wang, 2018. "Multivariate Global Sensitivity Analysis Based on Distance Components Decomposition," Risk Analysis, John Wiley & Sons, vol. 38(12), pages 2703-2721, December.
    3. Matieyendou Lamboni, 2020. "Uncertainty quantification: a minimum variance unbiased (joint) estimator of the non-normalized Sobol’ indices," Statistical Papers, Springer, vol. 61(5), pages 1939-1970, October.
    4. Xie, Xiangzhong & Schenkendorf, René & Krewer, Ulrike, 2019. "Efficient sensitivity analysis and interpretation of parameter correlations in chemical engineering," Reliability Engineering and System Safety, Elsevier, vol. 187(C), pages 159-173.
    5. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    6. Ge, Qiao & Ciuffo, Biagio & Menendez, Monica, 2015. "Combining screening and metamodel-based methods: An efficient sequential approach for the sensitivity analysis of model outputs," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 334-344.
    7. Mirko Ginocchi & Ferdinanda Ponci & Antonello Monti, 2021. "Sensitivity Analysis and Power Systems: Can We Bridge the Gap? A Review and a Guide to Getting Started," Energies, MDPI, vol. 14(24), pages 1-59, December.
    8. Pesenti, Silvana M. & Millossovich, Pietro & Tsanakas, Andreas, 2019. "Reverse sensitivity testing: What does it take to break the model?," European Journal of Operational Research, Elsevier, vol. 274(2), pages 654-670.
    9. Matieyendou Lamboni, 2018. "Global sensitivity analysis: a generalized, unbiased and optimal estimator of total-effect variance," Statistical Papers, Springer, vol. 59(1), pages 361-386, March.
    10. Zhou, Changcong & Shi, Zhuangke & Kucherenko, Sergei & Zhao, Haodong, 2022. "A unified approach for global sensitivity analysis based on active subspace and Kriging," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    11. Borgonovo, Emanuele & Plischke, Elmar, 2016. "Sensitivity analysis: A review of recent advances," European Journal of Operational Research, Elsevier, vol. 248(3), pages 869-887.
    12. Mara, Thierry A. & Becker, William E., 2021. "Polynomial chaos expansion for sensitivity analysis of model output with dependent inputs," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    13. Konakli, Katerina & Sudret, Bruno, 2016. "Global sensitivity analysis using low-rank tensor approximations," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 64-83.
    14. Isadora Antoniano‐Villalobos & Emanuele Borgonovo & Sumeda Siriwardena, 2018. "Which Parameters Are Important? Differential Importance Under Uncertainty," Risk Analysis, John Wiley & Sons, vol. 38(11), pages 2459-2477, November.
    15. Lu, Xuefei & Borgonovo, Emanuele, 2023. "Global sensitivity analysis in epidemiological modeling," European Journal of Operational Research, Elsevier, vol. 304(1), pages 9-24.
    16. Tianyang Wang & James S. Dyer & Warren J. Hahn, 2017. "Sensitivity analysis of decision making under dependent uncertainties using copulas," EURO Journal on Decision Processes, Springer;EURO - The Association of European Operational Research Societies, vol. 5(1), pages 117-139, November.
    17. Lamboni, Matieyendou, 2021. "Derivative-based integral equalities and inequality: A proxy-measure for sensitivity analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 179(C), pages 137-161.
    18. Hao, Wenrui & Lu, Zhenzhou & Wei, Pengfei, 2013. "Uncertainty importance measure for models with correlated normal variables," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 48-58.
    19. Wu, Zeping & Wang, Donghui & Okolo N, Patrick & Hu, Fan & Zhang, Weihua, 2016. "Global sensitivity analysis using a Gaussian Radial Basis Function metamodel," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 171-179.
    20. Lamboni, Matieyendou, 2020. "Derivative-based generalized sensitivity indices and Sobol’ indices," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 170(C), pages 236-256.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:162:y:2017:i:c:p:28-39. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.