IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v138y2020icp1-22.html
   My bibliography  Save this article

Two-dimensional vehicular movement modelling at intersections based on optimal control

Author

Listed:
  • Zhao, Jing
  • Knoop, Victor L.
  • Wang, Meng

Abstract

Modeling traffic flow at intersections is essential for the design, control, and management of intersections. A challenging feature of microscopic modeling vehicular movement at intersections is that drivers can choose among an infinite number of alternative traveling paths and speeds. This makes it fundamentally different from structured straight road sections with lanes. This study proposes a novel method to model the trajectories of vehicles in two-dimensional space and speed. Based on optimal control theory, it assumes drivers schedule their driving behavior, including the steering and acceleration, to minimize the predicted costs. The costs contain the running costs, which consist of the travel time and driving smoothness (longitudinally and laterally), and the terminal cost, which penalizes the deviations from the desired final state. Different than conventional methods, the vehicle motion dynamics are formulated in distance rather than in time. The model is solved by an iterative numerical solution algorithm based on the Minimum Principle of Pontryagin. The descriptive power, plausibility, and accuracy of the proposed model are investigated by comparing the calculated results under several cases, which can be solved from symmetry or analytically. The proposed model is further calibrated and validated using empirical trajectory data, and the quality of the predicted trajectory is confirmed. Qualitatively, the optimal trajectory changes in the range of the shortest path and smoothest path under different weights of the running cost. The proposed model can be used as a starting point and extended with more considerations of intersection operation in the real world for future applications.

Suggested Citation

  • Zhao, Jing & Knoop, Victor L. & Wang, Meng, 2020. "Two-dimensional vehicular movement modelling at intersections based on optimal control," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 1-22.
  • Handle: RePEc:eee:transb:v:138:y:2020:i:c:p:1-22
    DOI: 10.1016/j.trb.2020.04.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S019126152030299X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2020.04.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gipps, P.G., 1981. "A behavioural car-following model for computer simulation," Transportation Research Part B: Methodological, Elsevier, vol. 15(2), pages 105-111, April.
    2. Yu, Shaowei & Shi, Zhongke, 2014. "An extended car-following model at signalized intersections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 152-159.
    3. Rajagopal, 2014. "The Human Factors," Palgrave Macmillan Books, in: Architecting Enterprise, chapter 9, pages 225-249, Palgrave Macmillan.
    4. Yu, Chunhui & Sun, Weili & Liu, Henry X. & Yang, Xiaoguang, 2019. "Managing connected and automated vehicles at isolated intersections: From reservation- to optimization-based methods," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 416-435.
    5. Ahn, Soyoung & Cassidy, Michael J. & Laval, Jorge, 2004. "Verification of a simplified car-following theory," Transportation Research Part B: Methodological, Elsevier, vol. 38(5), pages 431-440, June.
    6. Dirk Helbing & Lubos Buzna & Anders Johansson & Torsten Werner, 2005. "Self-Organized Pedestrian Crowd Dynamics: Experiments, Simulations, and Design Solutions," Transportation Science, INFORMS, vol. 39(1), pages 1-24, February.
    7. Vasic, Jelena & Ruskin, Heather J., 2012. "Cellular automata simulation of traffic including cars and bicycles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2720-2729.
    8. Tang, Tie-Qiao & Zhang, Jian & Liu, Kai, 2017. "A speed guidance model accounting for the driver’s bounded rationality at a signalized intersection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 45-52.
    9. Zhao, Xiao-mei & Gao, Zi-you & Jia, Bin, 2007. "The capacity drop caused by the combined effect of the intersection and the bus stop in a CA model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(2), pages 645-658.
    10. Xie, Dong-Fan & Gao, Zi-You & Zhao, Xiao-Mei & Li, Ke-Ping, 2009. "Characteristics of mixed traffic flow with non-motorized vehicles and motorized vehicles at an unsignalized intersection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(10), pages 2041-2050.
    11. Xin-Gang Li & Zi-You Gao & Bin Jia & Xiao-Mei Zhao, 2009. "Cellular Automata Model For Unsignalized T-Shaped Intersection," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 20(04), pages 501-512.
    12. Zheng, Zuduo, 2014. "Recent developments and research needs in modeling lane changing," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 16-32.
    13. Sasaki, Masashi & Nagatani, Takashi, 2003. "Transition and saturation of traffic flow controlled by traffic lights," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 325(3), pages 531-546.
    14. Newell, G. F., 2002. "A simplified car-following theory: a lower order model," Transportation Research Part B: Methodological, Elsevier, vol. 36(3), pages 195-205, March.
    15. Zhao, Jing & Li, Peng, 2016. "An extended car-following model with consideration of speed guidance at intersections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 1-8.
    16. Tang, Tie-Qiao & Luo, Xiao-Feng & Zhang, Jian & Chen, Liang, 2018. "Modeling electric bicycle’s lane-changing and retrograde behaviors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1377-1386.
    17. Yu, Chunhui & Feng, Yiheng & Liu, Henry X. & Ma, Wanjing & Yang, Xiaoguang, 2018. "Integrated optimization of traffic signals and vehicle trajectories at isolated urban intersections," Transportation Research Part B: Methodological, Elsevier, vol. 112(C), pages 89-112.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jingwei Wang & Yin Han & Peng Li, 2022. "Integrated Robust Optimization of Scheduling and Signal Timing for Bus Rapid Transit," Sustainability, MDPI, vol. 14(24), pages 1-18, December.
    2. Ambróz HÁJNIK & Veronika HARANTOVÁ & Alica KALAŠOVÁ & Kristián ČULÍK, 2021. "Traffic Modeling Of Intersections On Vajnorska Street In Bratislava," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 16(3), pages 29-40, September.
    3. Wang, Yongjie & Shen, Binchang & Wu, Hao & Wang, Chao & Su, Qian & Chen, Wenqiang, 2021. "Modeling illegal pedestrian crossing behaviors at unmarked mid-block roadway based on extended decision field theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
    4. Di Luan & Mingjing Zhao & Qianru Zhao & Nan Wang, 2021. "Modelling of integrated scheduling problem of capacitated equipment systems with a multi-lane road network," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-38, June.
    5. Usman Ghumman & Hamid Jabbar & Mohsin Islam Tiwana & Ihsan Ullah Khalil & Faraz Kunwar, 2022. "A novel approach of overtaking maneuvering using modified RG method," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-20, January.
    6. Jia Hu & Zhexi Lian & Xiaoxue Sun & Arno Eichberger & Zhen Zhang & Jintao Lai, 2024. "Dynamic Right-of-Way Allocation on Bus Priority Lanes Considering Traffic System Resilience," Sustainability, MDPI, vol. 16(5), pages 1-18, February.
    7. Zhen Zhang & Lingfei Rong & Zhiquan Xie & Xiaoguang Yang, 2024. "Dynamic Multi-Function Lane Management for Connected and Automated Vehicles Considering Bus Priority," Sustainability, MDPI, vol. 16(18), pages 1-20, September.
    8. Yiqing Wen & Yibing Wang & Zhao Zhang & Jiaxin Wu & Liangxia Zhong & Markos Papageorgiou & Pengjun Zheng, 2023. "Effects of Connected Autonomous Vehicles on the Energy Performance of Signal-Controlled Junctions," Sustainability, MDPI, vol. 15(7), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marzoug, R. & Lakouari, N. & Ez-Zahraouy, H. & Castillo Téllez, B. & Castillo Téllez, M. & Cisneros Villalobos, L., 2022. "Modeling and simulation of car accidents at a signalized intersection using cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    2. Tian, Junfang & Li, Guangyu & Treiber, Martin & Jiang, Rui & Jia, Ning & Ma, Shoufeng, 2016. "Cellular automaton model simulating spatiotemporal patterns, phase transitions and concave growth pattern of oscillations in traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 560-575.
    3. Tang, Tie-Qiao & Yi, Zhi-Yan & Zhang, Jian & Wang, Tao & Leng, Jun-Qiang, 2018. "A speed guidance strategy for multiple signalized intersections based on car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 399-409.
    4. Yang, Qiaoli & Shi, Zhongke, 2018. "The evolution process of queues at signalized intersections under batch arrivals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 413-425.
    5. He, Zhengbing & Zheng, Liang & Guan, Wei, 2015. "A simple nonparametric car-following model driven by field data," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 185-201.
    6. Blanch Micó, Mª Teresa & Lucas Alba, Antonio & Bellés Rivera, Teresa & Ferruz Gracia, Ana Mª & Melchor Galán, Óscar M. & Delgado Pastor, Luis C. & Ruíz Jiménez, Francisco & Chóliz Montañés, Mariano, 2018. "Car following: Comparing distance-oriented vs. inertia-oriented driving techniques," Transport Policy, Elsevier, vol. 67(C), pages 13-22.
    7. Saifuzzaman, Mohammad & Zheng, Zuduo & Haque, Md. Mazharul & Washington, Simon, 2017. "Understanding the mechanism of traffic hysteresis and traffic oscillations through the change in task difficulty level," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 523-538.
    8. Sharma, Anshuman & Zheng, Zuduo & Bhaskar, Ashish, 2019. "Is more always better? The impact of vehicular trajectory completeness on car-following model calibration and validation," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 49-75.
    9. Oh, Simon & Yeo, Hwasoo, 2015. "Impact of stop-and-go waves and lane changes on discharge rate in recovery flow," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 88-102.
    10. Wang, Pengcheng & Yu, Guizhen & Wu, Xinkai & Qin, Hongmao & Wang, Yunpeng, 2018. "An extended car-following model to describe connected traffic dynamics under cyberattacks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 351-370.
    11. Yang, Qiaoli & Shi, Zhongke, 2018. "Effects of the design of waiting areas on the dynamic behavior of queues at signalized intersections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 181-195.
    12. Chiabaut, Nicolas & Leclercq, Ludovic & Buisson, Christine, 2010. "From heterogeneous drivers to macroscopic patterns in congestion," Transportation Research Part B: Methodological, Elsevier, vol. 44(2), pages 299-308, February.
    13. Tan, Jin-hua, 2019. "Impact of risk illusions on traffic flow in fog weather," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 216-222.
    14. Lu, Gongyuan & Shen, Zili & Liu, Xiaobo & Nie, Yu (Marco) & Xiong, Zhiqiang, 2022. "Are autonomous vehicles better off without signals at intersections? A comparative computational study," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 26-46.
    15. Wang, Tao & Yuan, Zijian & Zhang, Yuanshu & Zhang, Jing & Tian, Junfang, 2023. "A driving guidance strategy with pre-stop line at signalized intersection: Collaborative optimization of capacity and fuel consumption," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    16. Pengcheng Fan & Jingqiu Guo & Haifeng Zhao & Jasper S. Wijnands & Yibing Wang, 2019. "Car-Following Modeling Incorporating Driving Memory Based on Autoencoder and Long Short-Term Memory Neural Networks," Sustainability, MDPI, vol. 11(23), pages 1-15, November.
    17. van Lint, J.W.C. & Calvert, S.C., 2018. "A generic multi-level framework for microscopic traffic simulation—Theory and an example case in modelling driver distraction," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 63-86.
    18. Jabari, Saif Eddin & Zheng, Jianfeng & Liu, Henry X., 2014. "A probabilistic stationary speed–density relation based on Newell’s simplified car-following model," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 205-223.
    19. Tian, Junfang & Jiang, Rui & Jia, Bin & Gao, Ziyou & Ma, Shoufeng, 2016. "Empirical analysis and simulation of the concave growth pattern of traffic oscillations," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 338-354.
    20. Saifuzzaman, Mohammad & Zheng, Zuduo & Mazharul Haque, Md. & Washington, Simon, 2015. "Revisiting the Task–Capability Interface model for incorporating human factors into car-following models," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 1-19.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:138:y:2020:i:c:p:1-22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.