IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v119y2019icp45-68.html
   My bibliography  Save this article

Analytical derivation of the optimal traffic signal timing: Minimizing delay variability and spillback probability for undersaturated intersections

Author

Listed:
  • Mohajerpoor, Reza
  • Saberi, Meead
  • Ramezani, Mohsen

Abstract

Individual vehicles experience a large variability of delay at signalized intersections in urban networks. Existing traffic signal optimization frameworks often overlook the implications of delay variability and spillback for design and analysis of signal timing plans. This paper presents an analytical solution based on the shockwave theory to estimate delay variability at an undersaturated intersection. We also propose a new optimal signal timing formulation that minimizes the delay variability and probability of spillback in addition to total delay. Several algorithms are proposed to attain the global optimal signal timing for prefixed (given) and dynamic (optimal) cycle length control strategies. Illustrative microsimulation and numerical studies demonstrate the effectiveness of the proposed formulated models and signal optimization algorithms.

Suggested Citation

  • Mohajerpoor, Reza & Saberi, Meead & Ramezani, Mohsen, 2019. "Analytical derivation of the optimal traffic signal timing: Minimizing delay variability and spillback probability for undersaturated intersections," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 45-68.
  • Handle: RePEc:eee:transb:v:119:y:2019:i:c:p:45-68
    DOI: 10.1016/j.trb.2018.11.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261518300201
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2018.11.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michalopoulos, Panos G. & Stephanopoulos, Gregory & Stephanopoulos, George, 1981. "An application of shock wave theory to traffic signal control," Transportation Research Part B: Methodological, Elsevier, vol. 15(1), pages 35-51, February.
    2. Ramezani, Mohsen & Haddad, Jack & Geroliminis, Nikolas, 2015. "Dynamics of heterogeneity in urban networks: aggregated traffic modeling and hierarchical control," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 1-19.
    3. Paul I. Richards, 1956. "Shock Waves on the Highway," Operations Research, INFORMS, vol. 4(1), pages 42-51, February.
    4. Michalopoulos, Panos G. & Pisharody, Vijaykumar B., 1981. "Derivation of delays based on improved macroscopic traffic models," Transportation Research Part B: Methodological, Elsevier, vol. 15(5), pages 299-317, October.
    5. Dinopoulou, Vaya & Diakaki, Christina & Papageorgiou, Markos, 2006. "Applications of the urban traffic control strategy TUC," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1652-1665, December.
    6. Lee, Seunghyeon & Wong, S.C. & Varaiya, Pravin, 2017. "Group-based hierarchical adaptive traffic-signal control part I: Formulation," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 1-18.
    7. Kouvelas, Anastasios & Saeedmanesh, Mohammadreza & Geroliminis, Nikolas, 2017. "Enhancing model-based feedback perimeter control with data-driven online adaptive optimization," Transportation Research Part B: Methodological, Elsevier, vol. 96(C), pages 26-45.
    8. Wang, Xiubin Bruce & Cao, Xiaowei & Wang, Changjun, 2017. "Dynamic optimal real-time algorithm for signals (DORAS): Case of isolated roadway intersections," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 433-446.
    9. Denos C. Gazis, 1964. "Optimum Control of a System of Oversaturated Intersections," Operations Research, INFORMS, vol. 12(6), pages 815-831, December.
    10. Yu, Chunhui & Ma, Wanjing & Han, Ke & Yang, Xiaoguang, 2017. "Optimization of vehicle and pedestrian signals at isolated intersections," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 135-153.
    11. Lee, Seunghyeon & Wong, S.C. & Varaiya, Pravin, 2017. "Group-based hierarchical adaptive traffic-signal control Part II: Implementation," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 376-397.
    12. Yu, Chunhui & Feng, Yiheng & Liu, Henry X. & Ma, Wanjing & Yang, Xiaoguang, 2018. "Integrated optimization of traffic signals and vehicle trajectories at isolated urban intersections," Transportation Research Part B: Methodological, Elsevier, vol. 112(C), pages 89-112.
    13. Dion, Francois & Rakha, Hesham & Kang, Youn-Soo, 2004. "Comparison of delay estimates at under-saturated and over-saturated pre-timed signalized intersections," Transportation Research Part B: Methodological, Elsevier, vol. 38(2), pages 99-122, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Chunhui & Ma, Wanjing & Yang, Xiaoguang, 2020. "A time-slot based signal scheme model for fixed-time control at isolated intersections," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 176-192.
    2. Li, Ye & Mohajerpoor, Reza & Ramezani, Mohsen, 2021. "Perimeter control with real-time location-varying cordon," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 101-120.
    3. Gupta, Namrata & Patil, Gopal R. & Vu, Hai L., 2023. "Simple abstract models to study stability of urban networks with decentralized signal control," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 93-116.
    4. Mohajerpoor, Reza & Saberi, Meead & Vu, Hai L. & Garoni, Timothy M. & Ramezani, Mohsen, 2020. "H∞ robust perimeter flow control in urban networks with partial information feedback," Transportation Research Part B: Methodological, Elsevier, vol. 137(C), pages 47-73.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Chunhui & Ma, Wanjing & Yang, Xiaoguang, 2020. "A time-slot based signal scheme model for fixed-time control at isolated intersections," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 176-192.
    2. Mohebifard, Rasool & Hajbabaie, Ali, 2019. "Optimal network-level traffic signal control: A benders decomposition-based solution algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 252-274.
    3. Srivastava, Anupam & Jin, Wen-Long & Lebacque, Jean-Patrick, 2015. "A modified Cell Transmission Model with realistic queue discharge features at signalized intersections," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 302-315.
    4. Dion, Francois & Rakha, Hesham & Kang, Youn-Soo, 2004. "Comparison of delay estimates at under-saturated and over-saturated pre-timed signalized intersections," Transportation Research Part B: Methodological, Elsevier, vol. 38(2), pages 99-122, February.
    5. Cho, Hsun-Jung & Tseng, Ming-Te & Hwang, Ming-Chorng, 2014. "Using detection of vehicular presence to estimate shockwave speed and upstream traffics for a signalized intersection," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 1151-1165.
    6. Yang, Lei & Yin, Suwan & Han, Ke & Haddad, Jack & Hu, Minghua, 2017. "Fundamental diagrams of airport surface traffic: Models and applications," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 29-51.
    7. Yu, Hao & Ma, Rui & Zhang, H. Michael, 2018. "Optimal traffic signal control under dynamic user equilibrium and link constraints in a general network," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 302-325.
    8. Li, Ye & Mohajerpoor, Reza & Ramezani, Mohsen, 2021. "Perimeter control with real-time location-varying cordon," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 101-120.
    9. Wong, S. C. & Wong, G. C. K., 2002. "An analytical shock-fitting algorithm for LWR kinematic wave model embedded with linear speed-density relationship," Transportation Research Part B: Methodological, Elsevier, vol. 36(8), pages 683-706, September.
    10. Lee, Seunghyeon & Wong, S.C. & Varaiya, Pravin, 2017. "Group-based hierarchical adaptive traffic-signal control part I: Formulation," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 1-18.
    11. Ding, Heng & Di, Yunran & Feng, Zhongxiang & Zhang, Weihua & Zheng, Xiaoyan & Yang, Tao, 2022. "A perimeter control method for a congested urban road network with dynamic and variable ranges," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 160-187.
    12. Su, Z.C. & Chow, Andy H.F. & Fang, C.L. & Liang, E.M. & Zhong, R.X., 2023. "Hierarchical control for stochastic network traffic with reinforcement learning," Transportation Research Part B: Methodological, Elsevier, vol. 167(C), pages 196-216.
    13. Yin, Yafeng, 2008. "Robust optimal traffic signal timing," Transportation Research Part B: Methodological, Elsevier, vol. 42(10), pages 911-924, December.
    14. Leclercq, Ludovic & Ladino, Andres & Becarie, Cécile, 2021. "Enforcing optimal routing through dynamic avoidance maps," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 118-137.
    15. Amirgholy, Mahyar & Gao, H. Oliver, 2023. "Optimal traffic operation for maximum energy efficiency in signal-free urban networks: A macroscopic analytical approach," Applied Energy, Elsevier, vol. 329(C).
    16. Senlai Zhu & Ke Guo & Yuntao Guo & Huairen Tao & Quan Shi, 2019. "An Adaptive Signal Control Method with Optimal Detector Locations," Sustainability, MDPI, vol. 11(3), pages 1-13, January.
    17. Yildirimoglu, Mehmet & Ramezani, Mohsen, 2020. "Demand management with limited cooperation among travellers: A doubly dynamic approach," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 267-284.
    18. Ampountolas, Konstantinos & Zheng, Nan & Geroliminis, Nikolas, 2017. "Macroscopic modelling and robust control of bi-modal multi-region urban road networks," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 616-637.
    19. Ambühl, Lukas & Loder, Allister & Bliemer, Michiel C.J. & Menendez, Monica & Axhausen, Kay W., 2020. "A functional form with a physical meaning for the macroscopic fundamental diagram," Transportation Research Part B: Methodological, Elsevier, vol. 137(C), pages 119-132.
    20. Laval, Jorge A. & Aghamohammadi, Rafegh, 2022. "Network-wide Emissions Estimation Using the Macroscopic Fundamental Diagram," Institute of Transportation Studies, Working Paper Series qt8670m9jh, Institute of Transportation Studies, UC Davis.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:119:y:2019:i:c:p:45-68. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.