IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i2p484-d475803.html
   My bibliography  Save this article

Under Frequency Protection Enhancement of an Islanded Active Distribution Network Using a Virtual Inertia-Controlled-Battery Energy Storage System

Author

Listed:
  • Komsan Hongesombut

    (Department of Electrical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand)

  • Suphicha Punyakunlaset

    (Department of Electrical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand)

  • Sillawat Romphochai

    (Department of Electrical Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi, Pathum Thani 12110, Thailand)

Abstract

When an islanding condition caused by an unintentional single-line to ground fault occurs in an active distribution network with distributed generation, the frequency stability and protection issues remain challenging. Therefore, this paper presents the under frequency protection enhancement of the active distribution network using a virtual inertia-controlled-battery energy storage system to improve the frequency stability under the islanding condition caused by unintentional faults. The virtual inertia control is designed based on the direct and quadrature axis-controlled battery energy storage system to generate the virtual inertia power, compensating the system’s inertia to enhance the stability margin. The proposed method is verified by the simulation results that reveal the frequency stability performance and the under-frequency load shedding enhancement of the study active distribution network in Thailand. The study is divided into two cases: the normal control parameters and the parameter uncertainty scenarios, compared with a power-frequency droop control. The simulation results demonstrate that the proposed virtual inertia control can effectively improve the frequency and transient stabilities in the islanding condition, diminishing the number of loads disconnected by the proposed under-frequency load shedding scheme.

Suggested Citation

  • Komsan Hongesombut & Suphicha Punyakunlaset & Sillawat Romphochai, 2021. "Under Frequency Protection Enhancement of an Islanded Active Distribution Network Using a Virtual Inertia-Controlled-Battery Energy Storage System," Sustainability, MDPI, vol. 13(2), pages 1-39, January.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:2:p:484-:d:475803
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/2/484/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/2/484/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li Yang & Zhijian Hu, 2020. "Implementation of Dynamic Virtual Inertia Control of Supercapacitors for Multi-Area PV-Based Microgrid Clusters," Sustainability, MDPI, vol. 12(8), pages 1-23, April.
    2. McDonald, Jim, 2008. "Adaptive intelligent power systems: Active distribution networks," Energy Policy, Elsevier, vol. 36(12), pages 4346-4351, December.
    3. Thongchart Kerdphol & Masayuki Watanabe & Yasunori Mitani & Veena Phunpeng, 2019. "Applying Virtual Inertia Control Topology to SMES System for Frequency Stability Improvement of Low-Inertia Microgrids Driven by High Renewables," Energies, MDPI, vol. 12(20), pages 1-16, October.
    4. Wei Ma & Wei Wang & Xuezhi Wu & Ruonan Hu & Fen Tang & Weige Zhang, 2019. "Control Strategy of a Hybrid Energy Storage System to Smooth Photovoltaic Power Fluctuations Considering Photovoltaic Output Power Curtailment," Sustainability, MDPI, vol. 11(5), pages 1-22, March.
    5. Thuan Thanh Nguyen & Bach Hoang Dinh & Thai Dinh Pham & Thang Trung Nguyen, 2020. "Active Power Loss Reduction for Radial Distribution Systems by Placing Capacitors and PV Systems with Geography Location Constraints," Sustainability, MDPI, vol. 12(18), pages 1-30, September.
    6. Matteo Manganelli & Mario Nicodemo & Luigi D’Orazio & Laura Pimpinella & Maria Carmen Falvo, 2018. "Restoration of an Active MV Distribution Grid with a Battery ESS: A Real Case Study," Sustainability, MDPI, vol. 10(6), pages 1-17, June.
    7. Michele Fusero & Andrew Tuckey & Alessandro Rosini & Pietro Serra & Renato Procopio & Andrea Bonfiglio, 2019. "A Comprehensive Inverter-BESS Primary Control for AC Microgrids," Energies, MDPI, vol. 12(20), pages 1-19, October.
    8. Amjad Ali & Wuhua Li & Rashid Hussain & Xiangning He & Barry W. Williams & Abdul Hameed Memon, 2017. "Overview of Current Microgrid Policies, Incentives and Barriers in the European Union, United States and China," Sustainability, MDPI, vol. 9(7), pages 1-28, June.
    9. Ujjwal Datta & Akhtar Kalam & Juan Shi, 2020. "Battery Energy Storage System for Aggregated Inertia-Droop Control and a Novel Frequency Dependent State-of-Charge Recovery," Energies, MDPI, vol. 13(8), pages 1-18, April.
    10. Meysam Saeedian & Bahram Pournazarian & S. Sajjad Seyedalipour & Bahman Eskandari & Edris Pouresmaeil, 2020. "Emulating Rotational Inertia of Synchronous Machines by a New Control Technique in Grid-Interactive Converters," Sustainability, MDPI, vol. 12(13), pages 1-15, July.
    11. Chang Yuan & Peilin Xie & Dan Yang & Xiangning Xiao, 2018. "Transient Stability Analysis of Islanded AC Microgrids with a Significant Share of Virtual Synchronous Generators," Energies, MDPI, vol. 11(1), pages 1-19, January.
    12. Thongchart Kerdphol & Fathin S. Rahman & Yasunori Mitani & Komsan Hongesombut & Sinan Küfeoğlu, 2017. "Virtual Inertia Control-Based Model Predictive Control for Microgrid Frequency Stabilization Considering High Renewable Energy Integration," Sustainability, MDPI, vol. 9(5), pages 1-21, May.
    13. Watcharakorn Pinthurat & Branislav Hredzak, 2020. "Decentralized Frequency Control of Battery Energy Storage Systems Distributed in Isolated Microgrid," Energies, MDPI, vol. 13(11), pages 1-18, June.
    14. Wenxia Liu & Huiting Xu & Shuya Niu & Jiang Xie, 2016. "Optimal Distributed Generator Allocation Method Considering Voltage Control Cost," Sustainability, MDPI, vol. 8(2), pages 1-20, February.
    15. Eun-Kyu Lee & Wenbo Shi & Rajit Gadh & Wooseong Kim, 2016. "Design and Implementation of a Microgrid Energy Management System," Sustainability, MDPI, vol. 8(11), pages 1-19, November.
    16. Sohail Sarwar & Hazlie Mokhlis & Mohamadariff Othman & Munir Azam Muhammad & J. A. Laghari & Nurulafiqah Nadzirah Mansor & Hasmaini Mohamad & Alireza Pourdaryaei, 2020. "A Mixed Integer Linear Programming Based Load Shedding Technique for Improving the Sustainability of Islanded Distribution Systems," Sustainability, MDPI, vol. 12(15), pages 1-23, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Umme Kulsum Jhuma & Shameem Ahmad & Tofael Ahmed, 2022. "A Novel Approach for Secure Hybrid Islanding Detection Considering the Dynamic Behavior of Power and Load in Electrical Distribution Networks," Sustainability, MDPI, vol. 14(19), pages 1-27, October.
    2. Bianca Goia & Tudor Cioara & Ionut Anghel, 2022. "Virtual Power Plant Optimization in Smart Grids: A Narrative Review," Future Internet, MDPI, vol. 14(5), pages 1-22, April.
    3. Gang Xu & Bingxu Zhang & Le Yang & Yi Wang, 2021. "Active and Reactive Power Collaborative Optimization for Active Distribution Networks Considering Bi-Directional V2G Behavior," Sustainability, MDPI, vol. 13(11), pages 1-26, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fauzan Hanif Jufri & Jaesung Jung & Budi Sudiarto & Iwa Garniwa, 2023. "Development of Virtual Inertia Control with State-of-Charge Recovery Strategy Using Coordinated Secondary Frequency Control for Optimized Battery Capacity in Isolated Low Inertia Grid," Energies, MDPI, vol. 16(14), pages 1-22, July.
    2. Restrepo, Mauricio & Cañizares, Claudio A. & Simpson-Porco, John W. & Su, Peter & Taruc, John, 2021. "Optimization- and Rule-based Energy Management Systems at the Canadian Renewable Energy Laboratory microgrid facility," Applied Energy, Elsevier, vol. 290(C).
    3. Danny Ochoa & Sergio Martinez, 2018. "Proposals for Enhancing Frequency Control in Weak and Isolated Power Systems: Application to the Wind-Diesel Power System of San Cristobal Island-Ecuador," Energies, MDPI, vol. 11(4), pages 1-25, April.
    4. Amr Saleh & Hany M. Hasanien & Rania A. Turky & Balgynbek Turdybek & Mohammed Alharbi & Francisco Jurado & Walid A. Omran, 2023. "Optimal Model Predictive Control for Virtual Inertia Control of Autonomous Microgrids," Sustainability, MDPI, vol. 15(6), pages 1-25, March.
    5. Jingya Jiang & Wei Wang & Xuezhi Wu & Fen Tang & Zhengwen Yang & Xiangjun Li, 2021. "Analysis of Harmonic Resonance Characteristics in Grid-Connected LCL Virtual Synchronous Generator," Sustainability, MDPI, vol. 13(8), pages 1-26, April.
    6. Sandro Sitompul & Yuki Hanawa & Verapatra Bupphaves & Goro Fujita, 2020. "State of Charge Control Integrated with Load Frequency Control for BESS in Islanded Microgrid," Energies, MDPI, vol. 13(18), pages 1-19, September.
    7. Mohamed Khamies & Salah Kamel & Mohamed H. Hassan & Mohamed F. Elnaggar, 2022. "A Developed Frequency Control Strategy for Hybrid Two-Area Power System with Renewable Energy Sources Based on an Improved Social Network Search Algorithm," Mathematics, MDPI, vol. 10(9), pages 1-31, May.
    8. Óscar Gonzales-Zurita & Jean-Michel Clairand & Elisa Peñalvo-López & Guillermo Escrivá-Escrivá, 2020. "Review on Multi-Objective Control Strategies for Distributed Generation on Inverter-Based Microgrids," Energies, MDPI, vol. 13(13), pages 1-29, July.
    9. Moonsung Bae & Hwanik Lee & Byongjun Lee, 2017. "An Approach to Improve the Penetration of Sustainable Energy Using Optimal Transformer Tap Control," Sustainability, MDPI, vol. 9(9), pages 1-15, August.
    10. Sharmistha Nandi & Sriparna Roy Ghatak & Parimal Acharjee & Fernando Lopes, 2023. "Non-Iterative, Unique, and Logical Formula-Based Technique to Determine Maximum Load Multiplier and Practical Load Multiplier for Both Transmission and Distribution Systems," Energies, MDPI, vol. 16(12), pages 1-19, June.
    11. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    12. Karthikeyan Nainar & Florin Iov, 2020. "Smart Meter Measurement-Based State Estimation for Monitoring of Low-Voltage Distribution Grids," Energies, MDPI, vol. 13(20), pages 1-18, October.
    13. Hao Xiao & Wei Pei & Zuomin Dong & Li Kong & Dan Wang, 2018. "Application and Comparison of Metaheuristic and New Metamodel Based Global Optimization Methods to the Optimal Operation of Active Distribution Networks," Energies, MDPI, vol. 11(1), pages 1-29, January.
    14. Sandro Sitompul & Goro Fujita, 2021. "Impact of Advanced Load-Frequency Control on Optimal Size of Battery Energy Storage in Islanded Microgrid System," Energies, MDPI, vol. 14(8), pages 1-18, April.
    15. Felix Garcia-Torres & Ascension Zafra-Cabeza & Carlos Silva & Stephane Grieu & Tejaswinee Darure & Ana Estanqueiro, 2021. "Model Predictive Control for Microgrid Functionalities: Review and Future Challenges," Energies, MDPI, vol. 14(5), pages 1-26, February.
    16. Oleksandr Miroshnyk & Oleksandr Moroz & Taras Shchur & Andrii Chepizhnyi & Mohamed Qawaqzeh & Sławomir Kocira, 2023. "Investigation of Smart Grid Operation Modes with Electrical Energy Storage System," Energies, MDPI, vol. 16(6), pages 1-13, March.
    17. Darius Corbier & Frédéric Gonand & Marie Bessec, 2015. "Impacts of decentralised power generation on distribution networks: a statistical typology of European countries," Working Papers 1509, Chaire Economie du climat.
    18. Fernández-Guillamón, Ana & Gómez-Lázaro, Emilio & Muljadi, Eduard & Molina-García, Ángel, 2019. "Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    19. Andrea Bonfiglio & Massimo Brignone & Marco Invernizzi & Alessandro Labella & Daniele Mestriner & Renato Procopio, 2017. "A Simplified Microgrid Model for the Validation of Islanded Control Logics," Energies, MDPI, vol. 10(8), pages 1-28, August.
    20. Grzegorz Hołdyński & Zbigniew Skibko & Andrzej Firlit & Wojciech Walendziuk, 2024. "Analysis of the Impact of a Photovoltaic Farm on Selected Parameters of Power Quality in a Medium-Voltage Power Grid," Energies, MDPI, vol. 17(3), pages 1-17, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:2:p:484-:d:475803. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.