IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i8p3299-d347287.html
   My bibliography  Save this article

Implementation of Dynamic Virtual Inertia Control of Supercapacitors for Multi-Area PV-Based Microgrid Clusters

Author

Listed:
  • Li Yang

    (School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China)

  • Zhijian Hu

    (School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China)

Abstract

In order to improve the dynamic stability of multi-area microgrid (MG) clusters in the autonomous mode, this study proposes a novel fuzzy-based dynamic inertia control strategy for supercapacitors in multi-area autonomous MG clusters. By virtue of the integral manifold theory, the interactive influence of inertia on dynamic stability for multi-area MG clusters is explored in detail. The energy function of multi-area MG clusters is constructed to further analyze the inertia constant. Based on the analysis of the mechanism, a control strategy for the fuzzy-based dynamic inertia control of supercapacitors for multi-area MG clusters is further proposed. For each sub-microgrid (sub-MG), the gain of the fuzzy-based dynamic inertia control is self-tuned dynamically, with system events being triggered, so as to flexibly and robustly enhance the dynamic performance of the multi-area MG clusters in the autonomous mode. To verify the effectiveness of the proposed control scheme, a three-area photovoltaic (PV)-based MG cluster is designed and simulated on the MATLAB/Simulink platform. Moreover, a comparison between the dynamic fuzzy-based inertial control method and an additional droop control method is finally presented to validate the advantages of the fuzzy-based dynamic inertial control approach.

Suggested Citation

  • Li Yang & Zhijian Hu, 2020. "Implementation of Dynamic Virtual Inertia Control of Supercapacitors for Multi-Area PV-Based Microgrid Clusters," Sustainability, MDPI, vol. 12(8), pages 1-23, April.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:8:p:3299-:d:347287
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/8/3299/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/8/3299/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bullich-Massagué, Eduard & Díaz-González, Francisco & Aragüés-Peñalba, Mònica & Girbau-Llistuella, Francesc & Olivella-Rosell, Pol & Sumper, Andreas, 2018. "Microgrid clustering architectures," Applied Energy, Elsevier, vol. 212(C), pages 340-361.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Komsan Hongesombut & Suphicha Punyakunlaset & Sillawat Romphochai, 2021. "Under Frequency Protection Enhancement of an Islanded Active Distribution Network Using a Virtual Inertia-Controlled-Battery Energy Storage System," Sustainability, MDPI, vol. 13(2), pages 1-39, January.
    2. Fauzan Hanif Jufri & Jaesung Jung & Budi Sudiarto & Iwa Garniwa, 2023. "Development of Virtual Inertia Control with State-of-Charge Recovery Strategy Using Coordinated Secondary Frequency Control for Optimized Battery Capacity in Isolated Low Inertia Grid," Energies, MDPI, vol. 16(14), pages 1-22, July.
    3. Duberney Murillo-Yarce & José Alarcón-Alarcón & Marco Rivera & Carlos Restrepo & Javier Muñoz & Carlos Baier & Patrick Wheeler, 2020. "A Review of Control Techniques in Photovoltaic Systems," Sustainability, MDPI, vol. 12(24), pages 1-21, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    2. Ahmadi, Seyed Ehsan & Sadeghi, Delnia & Marzband, Mousa & Abusorrah, Abdullah & Sedraoui, Khaled, 2022. "Decentralized bi-level stochastic optimization approach for multi-agent multi-energy networked micro-grids with multi-energy storage technologies," Energy, Elsevier, vol. 245(C).
    3. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    4. Wu, Raphael & Sansavini, Giovanni, 2020. "Integrating reliability and resilience to support the transition from passive distribution grids to islanding microgrids," Applied Energy, Elsevier, vol. 272(C).
    5. Alizadeh, Ali & Kamwa, Innocent & Moeini, Ali & Mohseni-Bonab, Seyed Masoud, 2023. "Energy management in microgrids using transactive energy control concept under high penetration of Renewables; A survey and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    6. Astriani, Yuli & Shafiullah, GM & Shahnia, Farhad, 2021. "Incentive determination of a demand response program for microgrids," Applied Energy, Elsevier, vol. 292(C).
    7. Sahoo, Subham & Pullaguram, Deepak & Mishra, Sukumar & Wu, Jianzhong & Senroy, Nilanjan, 2018. "A containment based distributed finite-time controller for bounded voltage regulation & proportionate current sharing in DC microgrids," Applied Energy, Elsevier, vol. 228(C), pages 2526-2538.
    8. Guido Cavraro & Tommaso Caldognetto & Ruggero Carli & Paolo Tenti, 2019. "A Master/Slave Approach to Power Flow and Overvoltage Control in Low-Voltage Microgrids," Energies, MDPI, vol. 12(14), pages 1-22, July.
    9. Fridgen, Gilbert & Halbrügge, Stephanie & Olenberger, Christian & Weibelzahl, Martin, 2020. "The insurance effect of renewable distributed energy resources against uncertain electricity price developments," Energy Economics, Elsevier, vol. 91(C).
    10. Long, Yong & Liu, Xia, 2024. "Optimal green investment strategy for grid-connected microgrid considering the impact of renewable energy source endowment and incentive policy," Energy, Elsevier, vol. 295(C).
    11. Namita Kumari & Ankush Sharma & Binh Tran & Naveen Chilamkurti & Damminda Alahakoon, 2023. "A Comprehensive Review of Digital Twin Technology for Grid-Connected Microgrid Systems: State of the Art, Potential and Challenges Faced," Energies, MDPI, vol. 16(14), pages 1-19, July.
    12. Kong, Xiangyu & Liu, Dehong & Wang, Chengshan & Sun, Fangyuan & Li, Shupeng, 2020. "Optimal operation strategy for interconnected microgrids in market environment considering uncertainty," Applied Energy, Elsevier, vol. 275(C).
    13. Mengelkamp, Esther & Schlund, David & Weinhardt, Christof, 2019. "Development and real-world application of a taxonomy for business models in local energy markets," Applied Energy, Elsevier, vol. 256(C).
    14. Zhou, Xiaoqian & Ai, Qian & Yousif, Muhammad, 2019. "Two kinds of decentralized robust economic dispatch framework combined distribution network and multi-microgrids," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    15. Wu, Ying & Wu, Yanpeng & Guerrero, Josep M. & Vasquez, Juan C., 2021. "A comprehensive overview of framework for developing sustainable energy internet: From things-based energy network to services-based management system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    16. Huang, Chunyi & Zhang, Mingzhi & Wang, Chengmin & Xie, Ning & Yuan, Zhao, 2022. "An interactive two-stage retail electricity market for microgrids with peer-to-peer flexibility trading," Applied Energy, Elsevier, vol. 320(C).
    17. Bandeiras, F. & Pinheiro, E. & Gomes, M. & Coelho, P. & Fernandes, J., 2020. "Review of the cooperation and operation of microgrid clusters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    18. Noor Hussain & Mashood Nasir & Juan Carlos Vasquez & Josep M. Guerrero, 2020. "Recent Developments and Challenges on AC Microgrids Fault Detection and Protection Systems–A Review," Energies, MDPI, vol. 13(9), pages 1-31, May.
    19. Vinny Motjoadi & Pitshou N. Bokoro & Moses O. Onibonoje, 2020. "A Review of Microgrid-Based Approach to Rural Electrification in South Africa: Architecture and Policy Framework," Energies, MDPI, vol. 13(9), pages 1-22, May.
    20. Yu, Hang & Niu, Songyan & Shang, Yitong & Shao, Ziyun & Jia, Youwei & Jian, Linni, 2022. "Electric vehicles integration and vehicle-to-grid operation in active distribution grids: A comprehensive review on power architectures, grid connection standards and typical applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:8:p:3299-:d:347287. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.