IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i14p5463-d1196878.html
   My bibliography  Save this article

Development of Virtual Inertia Control with State-of-Charge Recovery Strategy Using Coordinated Secondary Frequency Control for Optimized Battery Capacity in Isolated Low Inertia Grid

Author

Listed:
  • Fauzan Hanif Jufri

    (Department of Electrical Engineering, Universitas Indonesia, Depok 16424, Indonesia)

  • Jaesung Jung

    (Department of Energy Systems Research, Ajou University, Suwon 01811, Republic of Korea)

  • Budi Sudiarto

    (Department of Electrical Engineering, Universitas Indonesia, Depok 16424, Indonesia)

  • Iwa Garniwa

    (Department of Electrical Engineering, Universitas Indonesia, Depok 16424, Indonesia)

Abstract

Integrating renewable energy through inverter-based generators has decreased the power system’s inertia. Reduced inertia may lead to frequency instability during power imbalance disturbances, particularly in an isolated power system with limited inertia. The Battery Energy Storage System (BESS) and a virtual inertia (VI) emulation control system have become popular to mitigate this issue. Nonetheless, the BESS utilization for VI emulation is highly dependent on the availability of BESS capacity, which may affect the energy cost. Therefore, developing a VI emulation control strategy that requires less energy and can recover the state of charge (SoC) to a desired level to optimize BESS utilization is required. This paper proposes a VI control with an SoC recovery strategy through coordination with the generators’ secondary frequency control. Instead of relying on the frequency, such as in the conventional approach, the controlled signal of the generators’ secondary frequency control also includes the VI power and BESS SoC. Hence, the generators can contribute to lowering the VI required energy and recovering the BESS SoC. The results show that the proposed method outperforms the conventional method by requiring around 36% lower energy and the ability to maintain the BESS SoC.

Suggested Citation

  • Fauzan Hanif Jufri & Jaesung Jung & Budi Sudiarto & Iwa Garniwa, 2023. "Development of Virtual Inertia Control with State-of-Charge Recovery Strategy Using Coordinated Secondary Frequency Control for Optimized Battery Capacity in Isolated Low Inertia Grid," Energies, MDPI, vol. 16(14), pages 1-22, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5463-:d:1196878
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/14/5463/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/14/5463/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li Yang & Zhijian Hu, 2020. "Implementation of Dynamic Virtual Inertia Control of Supercapacitors for Multi-Area PV-Based Microgrid Clusters," Sustainability, MDPI, vol. 12(8), pages 1-23, April.
    2. Jung, Jaesung & Broadwater, Robert P., 2014. "Current status and future advances for wind speed and power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 762-777.
    3. Ujjwal Datta & Akhtar Kalam & Juan Shi, 2020. "Battery Energy Storage System for Aggregated Inertia-Droop Control and a Novel Frequency Dependent State-of-Charge Recovery," Energies, MDPI, vol. 13(8), pages 1-18, April.
    4. Jae-Won Chang & Gyu-Sub Lee & Hyeon-Jin Moon & Mark B. Glick & Seung-Il Moon, 2019. "Coordinated Frequency and State-of-Charge Control with Multi-Battery Energy Storage Systems and Diesel Generators in an Isolated Microgrid," Energies, MDPI, vol. 12(9), pages 1-16, April.
    5. Amr Saleh & Hany M. Hasanien & Rania A. Turky & Balgynbek Turdybek & Mohammed Alharbi & Francisco Jurado & Walid A. Omran, 2023. "Optimal Model Predictive Control for Virtual Inertia Control of Autonomous Microgrids," Sustainability, MDPI, vol. 15(6), pages 1-25, March.
    6. Malico, Isabel & Nepomuceno Pereira, Ricardo & Gonçalves, Ana Cristina & Sousa, Adélia M.O., 2019. "Current status and future perspectives for energy production from solid biomass in the European industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 960-977.
    7. Thongchart Kerdphol & Fathin Saifur Rahman & Yasunori Mitani, 2018. "Virtual Inertia Control Application to Enhance Frequency Stability of Interconnected Power Systems with High Renewable Energy Penetration," Energies, MDPI, vol. 11(4), pages 1-16, April.
    8. Cheng, Yi & Azizipanah-Abarghooee, Rasoul & Azizi, Sadegh & Ding, Lei & Terzija, Vladimir, 2020. "Smart frequency control in low inertia energy systems based on frequency response techniques: A review," Applied Energy, Elsevier, vol. 279(C).
    9. Md Ruhul Amin & Michael Negnevitsky & Evan Franklin & Kazi Saiful Alam & Seyed Behzad Naderi, 2021. "Application of Battery Energy Storage Systems for Primary Frequency Control in Power Systems with High Renewable Energy Penetration," Energies, MDPI, vol. 14(5), pages 1-22, March.
    10. Cho, Joohyun & Kleit, Andrew N., 2015. "Energy storage systems in energy and ancillary markets: A backwards induction approach," Applied Energy, Elsevier, vol. 147(C), pages 176-183.
    11. Hameed, Zeeshan & Aslam, Muhammad & Khan, Zakir & Maqsood, Khuram & Atabani, A.E. & Ghauri, Moinuddin & Khurram, Muhammad Shahzad & Rehan, Mohammad & Nizami, Abdul-Sattar, 2021. "Gasification of municipal solid waste blends with biomass for energy production and resources recovery: Current status, hybrid technologies and innovative prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    12. Ahmad, Lujean & Khordehgah, Navid & Malinauskaite, Jurgita & Jouhara, Hussam, 2020. "Recent advances and applications of solar photovoltaics and thermal technologies," Energy, Elsevier, vol. 207(C).
    13. Tielens, Pieter & Van Hertem, Dirk, 2016. "The relevance of inertia in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 999-1009.
    14. Berrada, Asmae & Loudiyi, Khalid & Zorkani, Izeddine, 2016. "Valuation of energy storage in energy and regulation markets," Energy, Elsevier, vol. 115(P1), pages 1109-1118.
    15. Tarkeshwar Mahto & Rakesh Kumar & Hasmat Malik & S. M. Suhail Hussain & Taha Selim Ustun, 2021. "Fractional Order Fuzzy Based Virtual Inertia Controller Design for Frequency Stability in Isolated Hybrid Power Systems," Energies, MDPI, vol. 14(6), pages 1-21, March.
    16. Thongchart Kerdphol & Fathin S. Rahman & Yasunori Mitani & Komsan Hongesombut & Sinan Küfeoğlu, 2017. "Virtual Inertia Control-Based Model Predictive Control for Microgrid Frequency Stabilization Considering High Renewable Energy Integration," Sustainability, MDPI, vol. 9(5), pages 1-21, May.
    17. Santos, L. & Dahi Taleghani, A. & Elsworth, D., 2022. "Repurposing abandoned wells for geothermal energy: Current status and future prospects," Renewable Energy, Elsevier, vol. 194(C), pages 1288-1302.
    18. Chamorro, César R. & Mondéjar, María E. & Ramos, Roberto & Segovia, José J. & Martín, María C. & Villamañán, Miguel A., 2012. "World geothermal power production status: Energy, environmental and economic study of high enthalpy technologies," Energy, Elsevier, vol. 42(1), pages 10-18.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Komsan Hongesombut & Suphicha Punyakunlaset & Sillawat Romphochai, 2021. "Under Frequency Protection Enhancement of an Islanded Active Distribution Network Using a Virtual Inertia-Controlled-Battery Energy Storage System," Sustainability, MDPI, vol. 13(2), pages 1-39, January.
    2. Fernández-Guillamón, Ana & Gómez-Lázaro, Emilio & Muljadi, Eduard & Molina-García, Ángel, 2019. "Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    3. Kaleem Ullah & Abdul Basit & Zahid Ullah & Sheraz Aslam & Herodotos Herodotou, 2021. "Automatic Generation Control Strategies in Conventional and Modern Power Systems: A Comprehensive Overview," Energies, MDPI, vol. 14(9), pages 1-43, April.
    4. Abdel-Raheem Youssef & Mohamad Mallah & Abdelfatah Ali & Mostafa F. Shaaban & Essam E. M. Mohamed, 2023. "Enhancement of Microgrid Frequency Stability Based on the Combined Power-to-Hydrogen-to-Power Technology under High Penetration Renewable Units," Energies, MDPI, vol. 16(8), pages 1-18, April.
    5. Mariano G. Ippolito & Rossano Musca & Gaetano Zizzo, 2021. "Analysis and Simulations of the Primary Frequency Control during a System Split in Continental Europe Power System," Energies, MDPI, vol. 14(5), pages 1-22, March.
    6. Farhad Amiri & Mohsen Eskandari & Mohammad Hassan Moradi, 2023. "Virtual Inertia Control in Autonomous Microgrids via a Cascaded Controller for Battery Energy Storage Optimized by Firefly Algorithm and a Comparison Study with GA, PSO, ABC, and GWO," Energies, MDPI, vol. 16(18), pages 1-22, September.
    7. Muhammad Saeed Uz Zaman & Muhammad Irfan & Muhammad Ahmad & Manuel Mazzara & Chul-Hwan Kim, 2020. "Modeling the Impact of Modified Inertia Coefficient (H) due to ESS in Power System Frequency Response Analysis," Energies, MDPI, vol. 13(4), pages 1-18, February.
    8. Ana Fernández-Guillamón & Antonio Vigueras-Rodríguez & Emilio Gómez-Lázaro & Ángel Molina-García, 2018. "Fast Power Reserve Emulation Strategy for VSWT Supporting Frequency Control in Multi-Area Power Systems," Energies, MDPI, vol. 11(10), pages 1-20, October.
    9. Matheus Schramm Dall’Asta & Telles Brunelli Lazzarin, 2024. "A Review of Fast Power-Reserve Control Techniques in Grid-Connected Wind Energy Conversion Systems," Energies, MDPI, vol. 17(2), pages 1-29, January.
    10. Amr Saleh & Hany M. Hasanien & Rania A. Turky & Balgynbek Turdybek & Mohammed Alharbi & Francisco Jurado & Walid A. Omran, 2023. "Optimal Model Predictive Control for Virtual Inertia Control of Autonomous Microgrids," Sustainability, MDPI, vol. 15(6), pages 1-25, March.
    11. Antweiler, Werner, 2021. "Microeconomic models of electricity storage: Price Forecasting, arbitrage limits, curtailment insurance, and transmission line utilization," Energy Economics, Elsevier, vol. 101(C).
    12. Joseph Oyekale & Mario Petrollese & Vittorio Tola & Giorgio Cau, 2020. "Impacts of Renewable Energy Resources on Effectiveness of Grid-Integrated Systems: Succinct Review of Current Challenges and Potential Solution Strategies," Energies, MDPI, vol. 13(18), pages 1-48, September.
    13. Ashish Shrestha & Francisco Gonzalez-Longatt, 2021. "Parametric Sensitivity Analysis of Rotor Angle Stability Indicators," Energies, MDPI, vol. 14(16), pages 1-13, August.
    14. Mohamed Khamies & Salah Kamel & Mohamed H. Hassan & Mohamed F. Elnaggar, 2022. "A Developed Frequency Control Strategy for Hybrid Two-Area Power System with Renewable Energy Sources Based on an Improved Social Network Search Algorithm," Mathematics, MDPI, vol. 10(9), pages 1-31, May.
    15. Bowen Zhou & Lei Meng & Dongsheng Yang & Zhanchao Ma & Guoyi Xu, 2019. "A Novel VSG-Based Accurate Voltage Control and Reactive Power Sharing Method for Islanded Microgrids," Sustainability, MDPI, vol. 11(23), pages 1-23, November.
    16. Óscar Gonzales-Zurita & Jean-Michel Clairand & Elisa Peñalvo-López & Guillermo Escrivá-Escrivá, 2020. "Review on Multi-Objective Control Strategies for Distributed Generation on Inverter-Based Microgrids," Energies, MDPI, vol. 13(13), pages 1-29, July.
    17. Hector Beltran & Sam Harrison & Agustí Egea-Àlvarez & Lie Xu, 2020. "Techno-Economic Assessment of Energy Storage Technologies for Inertia Response and Frequency Support from Wind Farms," Energies, MDPI, vol. 13(13), pages 1-21, July.
    18. Thongchart Kerdphol & Masayuki Watanabe & Yasunori Mitani & Veena Phunpeng, 2019. "Applying Virtual Inertia Control Topology to SMES System for Frequency Stability Improvement of Low-Inertia Microgrids Driven by High Renewables," Energies, MDPI, vol. 12(20), pages 1-16, October.
    19. Huang, Qisheng & Xu, Yunjian & Courcoubetis, Costas, 2020. "Stackelberg competition between merchant and regulated storage investment in wholesale electricity markets," Applied Energy, Elsevier, vol. 264(C).
    20. Cabrera-Tobar, Ana & Bullich-Massagué, Eduard & Aragüés-Peñalba, Mònica & Gomis-Bellmunt, Oriol, 2016. "Review of advanced grid requirements for the integration of large scale photovoltaic power plants in the transmission system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 971-987.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5463-:d:1196878. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.