IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i5p1324-d210532.html
   My bibliography  Save this article

Control Strategy of a Hybrid Energy Storage System to Smooth Photovoltaic Power Fluctuations Considering Photovoltaic Output Power Curtailment

Author

Listed:
  • Wei Ma

    (National Active Distribution Network Technology Research Center (NANTEC), Beijing JiaoTong University, Beijing 100044, China)

  • Wei Wang

    (National Active Distribution Network Technology Research Center (NANTEC), Beijing JiaoTong University, Beijing 100044, China
    Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081, China)

  • Xuezhi Wu

    (National Active Distribution Network Technology Research Center (NANTEC), Beijing JiaoTong University, Beijing 100044, China
    Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081, China)

  • Ruonan Hu

    (National Active Distribution Network Technology Research Center (NANTEC), Beijing JiaoTong University, Beijing 100044, China)

  • Fen Tang

    (National Active Distribution Network Technology Research Center (NANTEC), Beijing JiaoTong University, Beijing 100044, China
    Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081, China)

  • Weige Zhang

    (National Active Distribution Network Technology Research Center (NANTEC), Beijing JiaoTong University, Beijing 100044, China
    Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081, China)

Abstract

The power fluctuations of grid-connected photovoltaic (PV) systems have negative impacts on the power quality and stability of the utility grid. In this study, the combinations of a battery/supercapacitor hybrid energy storage system (HESS) and the PV power curtailment are used to smooth PV power fluctuations. A PV power curtailment algorithm is developed to limit PV power when power fluctuation exceeds the power capacity of the HESS. A multi-objective optimization model is established to dispatch the HESS power, considering energy losses and the state of charge (SOC) of the supercapacitor. To prevent the SOCs of the HESS from approaching their lower limits, a SOC correction strategy is proposed to correct the SOCs of the HESS. Moreover, this paper also investigates the performances (such as the smoothing effects, losses and lifetime of energy storage, and system net profits) of two different smoothing strategies, including the method of using the HESS and the proposed strategy. Finally, numerous simulations are carried out based on data obtained from a 750 kWp PV plant. Simulation results indicate that the proposed method is more economical and can effectively smooth power fluctuations compared with the method of using the HESS.

Suggested Citation

  • Wei Ma & Wei Wang & Xuezhi Wu & Ruonan Hu & Fen Tang & Weige Zhang, 2019. "Control Strategy of a Hybrid Energy Storage System to Smooth Photovoltaic Power Fluctuations Considering Photovoltaic Output Power Curtailment," Sustainability, MDPI, vol. 11(5), pages 1-22, March.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:5:p:1324-:d:210532
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/5/1324/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/5/1324/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Yang & Campana, Pietro Elia & Lundblad, Anders & Yan, Jinyue, 2017. "Comparative study of hydrogen storage and battery storage in grid connected photovoltaic system: Storage sizing and rule-based operation," Applied Energy, Elsevier, vol. 201(C), pages 397-411.
    2. Jacob, Ammu Susanna & Banerjee, Rangan & Ghosh, Prakash C., 2018. "Sizing of hybrid energy storage system for a PV based microgrid through design space approach," Applied Energy, Elsevier, vol. 212(C), pages 640-653.
    3. Shivashankar, S. & Mekhilef, Saad & Mokhlis, Hazlie & Karimi, M., 2016. "Mitigating methods of power fluctuation of photovoltaic (PV) sources – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1170-1184.
    4. Evans, Annette & Strezov, Vladimir & Evans, Tim J., 2012. "Assessment of utility energy storage options for increased renewable energy penetration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4141-4147.
    5. Das, Choton K. & Bass, Octavian & Kothapalli, Ganesh & Mahmoud, Thair S. & Habibi, Daryoush, 2018. "Overview of energy storage systems in distribution networks: Placement, sizing, operation, and power quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1205-1230.
    6. Lappalainen, Kari & Valkealahti, Seppo, 2017. "Output power variation of different PV array configurations during irradiance transitions caused by moving clouds," Applied Energy, Elsevier, vol. 190(C), pages 902-910.
    7. Hui Wang & Jianbo Sun & Weijun Wang, 2018. "Photovoltaic Power Forecasting Based on EEMD and a Variable-Weight Combination Forecasting Model," Sustainability, MDPI, vol. 10(8), pages 1-11, July.
    8. Parra, David & Swierczynski, Maciej & Stroe, Daniel I. & Norman, Stuart.A. & Abdon, Andreas & Worlitschek, Jörg & O’Doherty, Travis & Rodrigues, Lucelia & Gillott, Mark & Zhang, Xiaojin & Bauer, Chris, 2017. "An interdisciplinary review of energy storage for communities: Challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 730-749.
    9. Correa-Florez, Carlos Adrian & Gerossier, Alexis & Michiorri, Andrea & Kariniotakis, Georges, 2018. "Stochastic operation of home energy management systems including battery cycling," Applied Energy, Elsevier, vol. 225(C), pages 1205-1218.
    10. Wendy Miller & Aaron Liu & Zakaria Amin & Andreas Wagner, 2018. "Power Quality and Rooftop-Photovoltaic Households: An Examination of Measured Data at Point of Customer Connection," Sustainability, MDPI, vol. 10(4), pages 1-27, April.
    11. Javier Marcos & Iñigo De la Parra & Miguel García & Luis Marroyo, 2014. "Control Strategies to Smooth Short-Term Power Fluctuations in Large Photovoltaic Plants Using Battery Storage Systems," Energies, MDPI, vol. 7(10), pages 1-27, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fan Wu & Jun Wang & Zhang Sun & Tao Wang & Lei Chen & Xiaoyan Han, 2019. "An Optimal Wavelet Packets Basis Method for Cascade Hydro-PV-Pumped Storage Generation Systems to Smooth Photovoltaic Power Fluctuations," Energies, MDPI, vol. 12(24), pages 1-22, December.
    2. Komsan Hongesombut & Suphicha Punyakunlaset & Sillawat Romphochai, 2021. "Under Frequency Protection Enhancement of an Islanded Active Distribution Network Using a Virtual Inertia-Controlled-Battery Energy Storage System," Sustainability, MDPI, vol. 13(2), pages 1-39, January.
    3. Ma, Wei & Wang, Wei & Chen, Zhe & Wu, Xuezhi & Hu, Ruonan & Tang, Fen & Zhang, Weige, 2021. "Voltage regulation methods for active distribution networks considering the reactive power optimization of substations," Applied Energy, Elsevier, vol. 284(C).
    4. Yang Yang & Chong Lian & Chao Ma & Yusheng Zhang, 2019. "Research on Energy Storage Optimization for Large-Scale PV Power Stations under Given Long-Distance Delivery Mode," Energies, MDPI, vol. 13(1), pages 1-20, December.
    5. Wei Li & Ruixin Jin & Xiaoyong Ma & Guozun Zhang, 2023. "Capacity Optimal Allocation Method and Frequency Division Energy Management for Hybrid Energy Storage System Considering Grid-Connected Requirements in Photovoltaic System," Energies, MDPI, vol. 16(10), pages 1-16, May.
    6. Chao Ma & Sen Dong & Jijian Lian & Xiulan Pang, 2019. "Multi-Objective Sizing of Hybrid Energy Storage System for Large-Scale Photovoltaic Power Generation System," Sustainability, MDPI, vol. 11(19), pages 1-15, October.
    7. Jingya Jiang & Wei Wang & Xuezhi Wu & Fen Tang & Zhengwen Yang & Xiangjun Li, 2021. "Analysis of Harmonic Resonance Characteristics in Grid-Connected LCL Virtual Synchronous Generator," Sustainability, MDPI, vol. 13(8), pages 1-26, April.
    8. Linjun Shi & Fan Yang & Yang Li & Tao Zheng & Feng Wu & Kwang Y. Lee, 2022. "Optimal Configuration of Electrochemical Energy Storage for Renewable Energy Accommodation Based on Operation Strategy of Pumped Storage Hydro," Sustainability, MDPI, vol. 14(15), pages 1-20, August.
    9. Tan, Qiaofeng & Zhang, Ziyi & Wen, Xin & Fang, Guohua & Xu, Shuo & Nie, Zhuang & Wang, Yanling, 2024. "Risk control of hydropower-photovoltaic multi-energy complementary scheduling based on energy storage allocation," Applied Energy, Elsevier, vol. 358(C).
    10. Kameswara Satya Prakash Oruganti & Chockalingam Aravind Vaithilingam & Gowthamraj Rajendran & Ramasamy A, 2019. "Design and Sizing of Mobile Solar Photovoltaic Power Plant to Support Rapid Charging for Electric Vehicles," Energies, MDPI, vol. 12(18), pages 1-22, September.
    11. Ruonan Hu & Wei Wang & Zhe Chen & Xuezhi Wu & Long Jing & Wei Ma & Guohong Zeng, 2020. "Coordinated Voltage Regulation Methods in Active Distribution Networks with Soft Open Points," Sustainability, MDPI, vol. 12(22), pages 1-18, November.
    12. Edisson Villa-Ávila & Paul Arévalo & Roque Aguado & Danny Ochoa-Correa & Vinicio Iñiguez-Morán & Francisco Jurado & Marcos Tostado-Véliz, 2023. "Enhancing Energy Power Quality in Low-Voltage Networks Integrating Renewable Energy Generation: A Case Study in a Microgrid Laboratory," Energies, MDPI, vol. 16(14), pages 1-23, July.
    13. Luis Gerardo González & Rommel Chacon & Bernardo Delgado & Dario Benavides & Juan Espinoza, 2020. "Study of Energy Compensation Techniques in Photovoltaic Solar Systems with the Use of Supercapacitors in Low-Voltage Networks," Energies, MDPI, vol. 13(15), pages 1-15, July.
    14. Grzegorz Hołdyński & Zbigniew Skibko & Andrzej Firlit & Wojciech Walendziuk, 2024. "Analysis of the Impact of a Photovoltaic Farm on Selected Parameters of Power Quality in a Medium-Voltage Power Grid," Energies, MDPI, vol. 17(3), pages 1-17, January.
    15. Thanh Van Nguyen & Kyeong-Hwa Kim, 2019. "Power Flow Control Strategy and Reliable DC-Link Voltage Restoration for DC Microgrid under Grid Fault Conditions," Sustainability, MDPI, vol. 11(14), pages 1-27, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gonzalez-Moreno, A. & Marcos, J. & de la Parra, I. & Marroyo, L., 2022. "A PV ramp-rate control strategy to extend battery lifespan using forecasting," Applied Energy, Elsevier, vol. 323(C).
    2. Arévalo, Paul & Benavides, Dario & Tostado-Véliz, Marcos & Aguado, José A. & Jurado, Francisco, 2023. "Smart monitoring method for photovoltaic systems and failure control based on power smoothing techniques," Renewable Energy, Elsevier, vol. 205(C), pages 366-383.
    3. Gabriel Nasser Doyle de Doile & Paulo Rotella Junior & Luiz Célio Souza Rocha & Ivan Bolis & Karel Janda & Luiz Moreira Coelho Junior, 2021. "Hybrid Wind and Solar Photovoltaic Generation with Energy Storage Systems: A Systematic Literature Review and Contributions to Technical and Economic Regulations," Energies, MDPI, vol. 14(20), pages 1-22, October.
    4. Lappalainen, Kari & Wang, Guang C. & Kleissl, Jan, 2020. "Estimation of the largest expected photovoltaic power ramp rates," Applied Energy, Elsevier, vol. 278(C).
    5. Hossain, Md Alamgir & Pota, Hemanshu Roy & Squartini, Stefano & Zaman, Forhad & Guerrero, Josep M., 2019. "Energy scheduling of community microgrid with battery cost using particle swarm optimisation," Applied Energy, Elsevier, vol. 254(C).
    6. Thijs Van der Klauw & Johann L. Hurink & Gerard J. M. Smit, 2016. "Scheduling of Electricity Storage for Peak Shaving with Minimal Device Wear," Energies, MDPI, vol. 9(6), pages 1-19, June.
    7. Das, Choton K. & Bass, Octavian & Kothapalli, Ganesh & Mahmoud, Thair S. & Habibi, Daryoush, 2018. "Optimal placement of distributed energy storage systems in distribution networks using artificial bee colony algorithm," Applied Energy, Elsevier, vol. 232(C), pages 212-228.
    8. Lappalainen, Kari & Valkealahti, Seppo, 2022. "Sizing of energy storage systems for ramp rate control of photovoltaic strings," Renewable Energy, Elsevier, vol. 196(C), pages 1366-1375.
    9. Paulo Rotella Junior & Luiz Célio Souza Rocha & Sandra Naomi Morioka & Ivan Bolis & Gianfranco Chicco & Andrea Mazza & Karel Janda, 2021. "Economic Analysis of the Investments in Battery Energy Storage Systems: Review and Current Perspectives," Energies, MDPI, vol. 14(9), pages 1-29, April.
    10. Lappalainen, Kari & Valkealahti, Seppo, 2021. "Experimental study of the maximum power point characteristics of partially shaded photovoltaic strings," Applied Energy, Elsevier, vol. 301(C).
    11. Valentin Silvera Diaz & Daniel Augusto Cantane & André Quites Ordovás Santos & Oswaldo Hideo Ando Junior, 2021. "Comparative Analysis of Degradation Assessment of Battery Energy Storage Systems in PV Smoothing Application," Energies, MDPI, vol. 14(12), pages 1-16, June.
    12. Mousavi, Navid & Kothapalli, Ganesh & Habibi, Daryoush & Khiadani, Mehdi & Das, Choton K., 2019. "An improved mathematical model for a pumped hydro storage system considering electrical, mechanical, and hydraulic losses," Applied Energy, Elsevier, vol. 247(C), pages 228-236.
    13. Das, Choton K. & Bass, Octavian & Mahmoud, Thair S. & Kothapalli, Ganesh & Mousavi, Navid & Habibi, Daryoush & Masoum, Mohammad A.S., 2019. "Optimal allocation of distributed energy storage systems to improve performance and power quality of distribution networks," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    14. Tomislav Antić & Tomislav Capuder & Martin Bolfek, 2020. "A Comprehensive Analysis of the Voltage Unbalance Factor in PV and EV Rich Non-Synthetic Low Voltage Distribution Networks," Energies, MDPI, vol. 14(1), pages 1-30, December.
    15. Henok Ayele Behabtu & Maarten Messagie & Thierry Coosemans & Maitane Berecibar & Kinde Anlay Fante & Abraham Alem Kebede & Joeri Van Mierlo, 2020. "A Review of Energy Storage Technologies’ Application Potentials in Renewable Energy Sources Grid Integration," Sustainability, MDPI, vol. 12(24), pages 1-20, December.
    16. Virgilio Alfonso Murillo Rodríguez & Noé Villa Villaseñor & José Manuel Robles Solís & Omar Alejandro Guirette Barbosa, 2023. "Impact of Automation on Enhancing Energy Quality in Grid-Connected Photovoltaic Systems," Energies, MDPI, vol. 16(17), pages 1-25, August.
    17. Cabrera-Tobar, Ana & Bullich-Massagué, Eduard & Aragüés-Peñalba, Mònica & Gomis-Bellmunt, Oriol, 2016. "Review of advanced grid requirements for the integration of large scale photovoltaic power plants in the transmission system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 971-987.
    18. Federica Cucchiella & Idiano D’Adamo & Paolo Rosa, 2015. "Industrial Photovoltaic Systems: An Economic Analysis in Non-Subsidized Electricity Markets," Energies, MDPI, vol. 8(11), pages 1-16, November.
    19. Shahmohammadi, Ali & Sioshansi, Ramteen & Conejo, Antonio J. & Afsharnia, Saeed, 2018. "Market equilibria and interactions between strategic generation, wind, and storage," Applied Energy, Elsevier, vol. 220(C), pages 876-892.
    20. Heo, SungKu & Byun, Jaewon & Ifaei, Pouya & Ko, Jaerak & Ha, Byeongmin & Hwangbo, Soonho & Yoo, ChangKyoo, 2024. "Towards mega-scale decarbonized industrial park (Mega-DIP): Generative AI-driven techno-economic and environmental assessment of renewable and sustainable energy utilization in petrochemical industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:5:p:1324-:d:210532. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.