IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i13p5346-d379218.html
   My bibliography  Save this article

Emulating Rotational Inertia of Synchronous Machines by a New Control Technique in Grid-Interactive Converters

Author

Listed:
  • Meysam Saeedian

    (Department of Electrical Engineering and Automation (EEA), Aalto University, 02150 Espoo, Finland)

  • Bahram Pournazarian

    (Department of Electrical Engineering and Automation (EEA), Aalto University, 02150 Espoo, Finland)

  • S. Sajjad Seyedalipour

    (Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran 19697-64499, Iran)

  • Bahman Eskandari

    (Department of Electrical Engineering and Automation (EEA), Aalto University, 02150 Espoo, Finland)

  • Edris Pouresmaeil

    (Department of Electrical Engineering and Automation (EEA), Aalto University, 02150 Espoo, Finland)

Abstract

Integration of renewable energy sources (RESs) into power systems is growing due to eco-friendly concerns and ever-increasing electricity demand. Voltage source converters (VSCs) are the main interface between RESs and power grids, which have neither rotational inertia nor damping characteristics. Lack of these metrics make the power grid sensitive to frequency disturbances and thereby under frequency, to load shedding activation or even large-scale collapse. In this regard, the contribution of this paper is to develop a new control technique for VSCs that can provide virtual inertia and damping properties with the DC-link capacitors inhered in the DC-side of grid-tied VSCs. The applied VSC is controlled in the current controlled model, with the capability of injecting extra active power with the aim of frequency support during perturbations. The dynamics assessment of the proposed platform is derived in detail. It is revealed that the control scheme performs in a stable region even under weak-grid conditions. Finally, simulations are conducted in MATLAB to depict the efficacy and feasibility of the proposed method. The results show that frequency deviation is mitigated under step up/down changes in the demand, and the rate of change of frequency is improved by 47.37% compared to the case in which the synthetic inertia loop is canceled out.

Suggested Citation

  • Meysam Saeedian & Bahram Pournazarian & S. Sajjad Seyedalipour & Bahman Eskandari & Edris Pouresmaeil, 2020. "Emulating Rotational Inertia of Synchronous Machines by a New Control Technique in Grid-Interactive Converters," Sustainability, MDPI, vol. 12(13), pages 1-15, July.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:13:p:5346-:d:379218
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/13/5346/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/13/5346/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dreidy, Mohammad & Mokhlis, H. & Mekhilef, Saad, 2017. "Inertia response and frequency control techniques for renewable energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 144-155.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Komsan Hongesombut & Suphicha Punyakunlaset & Sillawat Romphochai, 2021. "Under Frequency Protection Enhancement of an Islanded Active Distribution Network Using a Virtual Inertia-Controlled-Battery Energy Storage System," Sustainability, MDPI, vol. 13(2), pages 1-39, January.
    2. Dillan Kyle Ockhuis & Maarten Kamper, 2021. "Potential of Slip Synchronous Wind Turbine Systems: Grid Support and Mechanical Load Mitigation," Energies, MDPI, vol. 14(16), pages 1-15, August.
    3. Lavr Vetoshkin & Zdeněk Müller, 2021. "A Comparative Analysis of a Power System Stability with Virtual Inertia," Energies, MDPI, vol. 14(11), pages 1-20, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pablo González-Inostroza & Claudia Rahmann & Ricardo Álvarez & Jannik Haas & Wolfgang Nowak & Christian Rehtanz, 2021. "The Role of Fast Frequency Response of Energy Storage Systems and Renewables for Ensuring Frequency Stability in Future Low-Inertia Power Systems," Sustainability, MDPI, vol. 13(10), pages 1-16, May.
    2. Antans Sauhats & Andrejs Utans & Jurijs Silinevics & Gatis Junghans & Dmitrijs Guzs, 2021. "Enhancing Power System Frequency with a Novel Load Shedding Method Including Monitoring of Synchronous Condensers’ Power Injections," Energies, MDPI, vol. 14(5), pages 1-21, March.
    3. Lourenço, Vitor Alves & Nadaleti, Willian Cézar & Vieira, Bruno Müller & Chua, Hui, 2021. "Methane production test of the anaerobic sludge from rice parboiling industries with the addition of biodiesel glycerol from rice bran oil in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    4. Rafiq Asghar & Francesco Riganti Fulginei & Hamid Wadood & Sarmad Saeed, 2023. "A Review of Load Frequency Control Schemes Deployed for Wind-Integrated Power Systems," Sustainability, MDPI, vol. 15(10), pages 1-29, May.
    5. Cheng, Yi & Azizipanah-Abarghooee, Rasoul & Azizi, Sadegh & Ding, Lei & Terzija, Vladimir, 2020. "Smart frequency control in low inertia energy systems based on frequency response techniques: A review," Applied Energy, Elsevier, vol. 279(C).
    6. Fernández-Guillamón, Ana & Gómez-Lázaro, Emilio & Muljadi, Eduard & Molina-García, Ángel, 2019. "Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    7. Yoon, Kwangsuk & Lee, Sang Soo & Ok, Yong Sik & Kwon, Eilhann E. & Song, Hocheol, 2019. "Enhancement of syngas for H2 production via catalytic pyrolysis of orange peel using CO2 and bauxite residue," Applied Energy, Elsevier, vol. 254(C).
    8. Ki Ryong Kim & Sangjung Lee & Jong-Pil Lee & Jaesik Kang, 2021. "An Enhanced Control Strategy for Mitigation of State-Transition Oscillation Phenomena in Grid-Forming Self-Synchronized Converter System with Islanded Power System," Energies, MDPI, vol. 14(24), pages 1-20, December.
    9. Kanwal, S. & Khan, B. & Ali, S.M. & Mehmood, C.A., 2018. "Gaussian process regression based inertia emulation and reserve estimation for grid interfaced photovoltaic system," Renewable Energy, Elsevier, vol. 126(C), pages 865-875.
    10. Dario Garozzo & Giuseppe Marco Tina, 2020. "Evaluation of the Effective Active Power Reserve for Fast Frequency Response of PV with BESS Inverters Considering Reactive Power Control," Energies, MDPI, vol. 13(13), pages 1-16, July.
    11. Polleux, Louis & Guerassimoff, Gilles & Marmorat, Jean-Paul & Sandoval-Moreno, John & Schuhler, Thierry, 2022. "An overview of the challenges of solar power integration in isolated industrial microgrids with reliability constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    12. Junfeng Qi & Fei Tang & Jiarui Xie & Xinang Li & Xiaoqing Wei & Zhuo Liu, 2022. "Research on Frequency Response Modeling and Frequency Modulation Parameters of the Power System Highly Penetrated by Wind Power," Sustainability, MDPI, vol. 14(13), pages 1-19, June.
    13. Md Alamgir Hossain & Hemanshu Roy Pota & Walid Issa & Md Jahangir Hossain, 2017. "Overview of AC Microgrid Controls with Inverter-Interfaced Generations," Energies, MDPI, vol. 10(9), pages 1-27, August.
    14. Mararakanye, Ndamulelo & Bekker, Bernard, 2019. "Renewable energy integration impacts within the context of generator type, penetration level and grid characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 441-451.
    15. Ratnam Kamala Sarojini & Kaliannan Palanisamy & Enrico De Tuglie, 2022. "A Fuzzy Logic-Based Emulated Inertia Control to a Supercapacitor System to Improve Inertia in a Low Inertia Grid with Renewables," Energies, MDPI, vol. 15(4), pages 1-23, February.
    16. Ninoslav Holjevac & Tomislav Baškarad & Josip Đaković & Matej Krpan & Matija Zidar & Igor Kuzle, 2021. "Challenges of High Renewable Energy Sources Integration in Power Systems—The Case of Croatia," Energies, MDPI, vol. 14(4), pages 1-20, February.
    17. Jose Rueda Torres & Zameer Ahmad & Nidarshan Veera Kumar & Elyas Rakhshani & Ebrahim Adabi & Peter Palensky & Mart van der Meijden, 2021. "Power Hardware-in-the-Loop-Based Performance Analysis of Different Converter Controllers for Fast Active Power Regulation in Low-Inertia Power Systems," Energies, MDPI, vol. 14(11), pages 1-15, June.
    18. Okur, Özge & Voulis, Nina & Heijnen, Petra & Lukszo, Zofia, 2019. "Aggregator-mediated demand response: Minimizing imbalances caused by uncertainty of solar generation," Applied Energy, Elsevier, vol. 247(C), pages 426-437.
    19. Alejandro Rubio & Holger Behrends & Stefan Geißendörfer & Karsten von Maydell & Carsten Agert, 2020. "Determination of the Required Power Response of Inverters to Provide Fast Frequency Support in Power Systems with Low Synchronous Inertia," Energies, MDPI, vol. 13(4), pages 1-21, February.
    20. Achitaev, Andrey A. & Suslov, Konstantin V. & Nazarychev, Alexander N. & Volkova, Irina O. & Kozhemyakin, Vyacheslav E. & Voloshin, Alexander A. & Minakov, Andrey V., 2022. "Application of electromagnetic continuous variable transmission in hydraulic turbines to increase stability of an off-grid power system," Renewable Energy, Elsevier, vol. 196(C), pages 125-136.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:13:p:5346-:d:379218. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.