IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i10p5478-d554222.html
   My bibliography  Save this article

Review of Optimization Dynamically Applied in the Construction and the Application Potential of ICT

Author

Listed:
  • Boda Liu

    (College of Civil Engineering, Tongji University, Shanghai 200092, China)

  • Bin Yang

    (College of Civil Engineering, Tongji University, Shanghai 200092, China)

  • Jianzhuang Xiao

    (College of Civil Engineering, Tongji University, Shanghai 200092, China)

  • Dayu Zhu

    (College of Civil Engineering, Tongji University, Shanghai 200092, China)

  • Binghan Zhang

    (College of Civil Engineering, Tongji University, Shanghai 200092, China)

  • Zhichen Wang

    (College of Civil Engineering, Tongji University, Shanghai 200092, China)

  • Miaosi Dong

    (College of Civil Engineering, Tongji University, Shanghai 200092, China)

Abstract

Currently, construction projects are getting more complex, applying more information and communication technologies (ICT), while few studies use real-time data to dynamically optimize construction. The purpose of this article is to study the current development status of the optimization applied dynamically in the construction phase and their potential for applying real data collected by ICT. This article reviews 72 relevant optimization methods and identified some of the ICT research studies that can provide them with dynamic data. The dynamic triggering mode of each research is first analyzed, then its dynamic way, dynamic data, data resource, optimization object, and method are identified and formulated. The results reveal the great value of dynamic optimization in dealing with the complicated and uncertain contextual conditions in construction. Different dynamic triggering modes have different affinities with real data. Then, through the analysis of ICT articles, the huge potential of these dynamic optimization methods in applying real data is shown. This paper points out the most practical dynamic mode for engineers or managers to continuously apply optimization methods to solve dynamic problems in construction, and put forward scientific questions for related researchers: How does one combine ICT with the event dynamics or uncertain parameters? Based on this, the research gap of this area is identified a conceptual solution is proposed.

Suggested Citation

  • Boda Liu & Bin Yang & Jianzhuang Xiao & Dayu Zhu & Binghan Zhang & Zhichen Wang & Miaosi Dong, 2021. "Review of Optimization Dynamically Applied in the Construction and the Application Potential of ICT," Sustainability, MDPI, vol. 13(10), pages 1-18, May.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:10:p:5478-:d:554222
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/10/5478/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/10/5478/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Foroogh Ghasemi & Mohammad Hossein Mahmoudi Sari & Vahidreza Yousefi & Reza Falsafi & Jolanta Tamošaitienė, 2018. "Project Portfolio Risk Identification and Analysis, Considering Project Risk Interactions and Using Bayesian Networks," Sustainability, MDPI, vol. 10(5), pages 1-23, May.
    2. Zaher Mundher Yaseen & Zainab Hasan Ali & Sinan Q. Salih & Nadhir Al-Ansari, 2020. "Prediction of Risk Delay in Construction Projects Using a Hybrid Artificial Intelligence Model," Sustainability, MDPI, vol. 12(4), pages 1-14, February.
    3. Hyunsoo Kim & Sangwon Han, 2018. "Accuracy Improvement of Real-Time Location Tracking for Construction Workers," Sustainability, MDPI, vol. 10(5), pages 1-16, May.
    4. Heungjo An & Young-Ji Byon & Chung-Suk Cho, 2018. "Economic and Environmental Evaluation of a Brick Delivery System Based on Multi-Trip Vehicle Loader Routing Problem for Small Construction Sites," Sustainability, MDPI, vol. 10(5), pages 1-14, May.
    5. Siqing Shan & Zhongjun Hu & Zhilian Liu & Jihong Shi & Li Wang & Zhuming Bi, 2017. "An adaptive genetic algorithm for demand-driven and resource-constrained project scheduling in aircraft assembly," Information Technology and Management, Springer, vol. 18(1), pages 41-53, March.
    6. Lihua He & Lianying Zhang, 2013. "Dynamic priority rule-based forward-backward heuristic algorithm for resource levelling problem in construction project," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(8), pages 1106-1117, August.
    7. Zhaojing Wang & Hao Hu, 2018. "Dynamic response to demand variability for precast production rescheduling with multiple lines," International Journal of Production Research, Taylor & Francis Journals, vol. 56(16), pages 5386-5401, August.
    8. Rong Zhou & Chun-ming Ye & Hui-min Ma, 2013. "Model Research of Multi-Objective and Resource-Constrained Project Scheduling Problem," Springer Books, in: Ershi Qi & Jiang Shen & Runliang Dou (ed.), The 19th International Conference on Industrial Engineering and Engineering Management, edition 127, chapter 0, pages 991-1001, Springer.
    9. Kerkhove, L.-P. & Vanhoucke, M., 2017. "Optimised scheduling for weather sensitive offshore construction projects," Omega, Elsevier, vol. 66(PA), pages 58-78.
    10. Agnieszka Leśniak & Krzysztof Zima, 2018. "Cost Calculation of Construction Projects Including Sustainability Factors Using the Case Based Reasoning (CBR) Method," Sustainability, MDPI, vol. 10(5), pages 1-14, May.
    11. Wei Chen & Ying Zhao & Yangqing Yu & Kaiman Chen & Mehrdad Arashpour, 2020. "Collaborative Scheduling of On-Site and Off-Site Operations in Prefabrication," Sustainability, MDPI, vol. 12(21), pages 1-21, November.
    12. Jaehyun Choi & Jia Xuelei & WoonSeong Jeong, 2018. "Optimizing the Construction Job Site Vehicle Scheduling Problem," Sustainability, MDPI, vol. 10(5), pages 1-13, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beichuan Hong & Lin Lü, 2022. "Assessment of Emissions and Energy Consumption for Construction Machinery in Earthwork Activities by Incorporating Real-World Measurement and Discrete-Event Simulation," Sustainability, MDPI, vol. 14(9), pages 1-20, April.
    2. Changchun Li & Sen Wang, 2022. "Digital Optimization, Green R&D Collaboration, and Green Technological Innovation in Manufacturing Enterprises," Sustainability, MDPI, vol. 14(19), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Steven J. Schuldt & Mathew R. Nicholson & Yaquarri A. Adams & Justin D. Delorit, 2021. "Weather-Related Construction Delays in a Changing Climate: A Systematic State-of-the-Art Review," Sustainability, MDPI, vol. 13(5), pages 1-25, March.
    2. Edmundas Kazimieras Zavadskas & Jonas Šaparauskas & Jurgita Antucheviciene, 2018. "Sustainability in Construction Engineering," Sustainability, MDPI, vol. 10(7), pages 1-7, June.
    3. Basem Al Khatib & Yap Soon Poh & Ahmed El-Shafie, 2018. "Delay Factors in Reconstruction Projects: A Case Study of Mataf Expansion Project," Sustainability, MDPI, vol. 10(12), pages 1-18, December.
    4. Zhengxun Jin & Jonghyeob Kim & Chang-taek Hyun & Sangwon Han, 2019. "Development of a Model for Predicting Probabilistic Life-Cycle Cost for the Early Stage of Public-Office Construction," Sustainability, MDPI, vol. 11(14), pages 1-18, July.
    5. Xiaoyan Li & Xuedong Liang & Zhi Li, 2023. "The Strategy of Strengthening Efficiency and Environmental Performance of Product Changeover in the Multiproduct Production System," SAGE Open, , vol. 13(3), pages 21582440231, September.
    6. Emad Mohamed & Parinaz Jafari & Adam Chehouri & Simaan AbouRizk, 2021. "Simulation-Based Approach for Lookahead Scheduling of Onshore Wind Projects Subject to Weather Risk," Sustainability, MDPI, vol. 13(18), pages 1-27, September.
    7. Yuvraj Gajpal & Ashraf Elazouni, 2015. "Enhanced heuristic for finance-based scheduling of construction projects," Construction Management and Economics, Taylor & Francis Journals, vol. 33(7), pages 531-553, July.
    8. Dudu Guo & Yinuo Su & Xiaojiang Zhang & Zhen Yang & Pengbin Duan, 2024. "Multi-Objective Optimization of Short-Inverted Transport Scheduling Strategy Based on Road–Railway Intermodal Transport," Sustainability, MDPI, vol. 16(15), pages 1-25, July.
    9. Albert H. Schrotenboer & Evrim Ursavas & Iris F. A. Vis, 2019. "A Branch-and-Price-and-Cut Algorithm for Resource-Constrained Pickup and Delivery Problems," Transportation Science, INFORMS, vol. 53(4), pages 1001-1022, July.
    10. Rippel, Daniel & Peng, Shengrui & Lütjen, Michael & Sczcerbicka, Helena & Freitag, Michael, 2020. "Model transformation framework for scheduling offshore logistics," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), Data Science in Maritime and City Logistics: Data-driven Solutions for Logistics and Sustainability. Proceedings of the Hamburg International Conferen, volume 30, pages 521-552, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    11. Edyta Plebankiewicz & Damian Wieczorek, 2020. "Prediction of Cost Overrun Risk in Construction Projects," Sustainability, MDPI, vol. 12(22), pages 1-15, November.
    12. Sewoong Hwang & Zoonky Lee & Jonghyuk Kim, 2019. "Real-Time Pedestrian Flow Analysis Using Networked Sensors for a Smart Subway System," Sustainability, MDPI, vol. 11(23), pages 1-16, November.
    13. Yoon-Soo Shin & Junhee Kim, 2022. "A Vision-Based Collision Monitoring System for Proximity of Construction Workers to Trucks Enhanced by Posture-Dependent Perception and Truck Bodies’ Occupied Space," Sustainability, MDPI, vol. 14(13), pages 1-13, June.
    14. Ekaterine Gulua & Natalia Kharadze, 2022. "Employed Students' Development Challenges in Georgia," European Journal of Interdisciplinary Studies Articles, Revistia Research and Publishing, vol. 8, ejis_v8_i.
    15. Hongbo Li & Linwen Zheng & Hanyu Zhu, 2023. "Resource leveling in projects with flexible structures," Annals of Operations Research, Springer, vol. 321(1), pages 311-342, February.
    16. Soares, Ricardo & Marques, Alexandra & Amorim, Pedro & Parragh, Sophie N., 2024. "Synchronisation in vehicle routing: Classification schema, modelling framework and literature review," European Journal of Operational Research, Elsevier, vol. 313(3), pages 817-840.
    17. Ahmed Farouk Kineber & Shah Siddharth & Nicholas Chileshe & Badr Alsolami & Mohammed Magdy Hamed, 2022. "Addressing of Value Management Implementation Barriers within the Indian Construction Industry: A PLS-SEM Approach," Sustainability, MDPI, vol. 14(24), pages 1-24, December.
    18. Ke Wang & Ziyi Ying & Shankha Shubhra Goswami & Yongsheng Yin & Yafei Zhao, 2023. "Investigating the Role of Artificial Intelligence Technologies in the Construction Industry Using a Delphi-ANP-TOPSIS Hybrid MCDM Concept under a Fuzzy Environment," Sustainability, MDPI, vol. 15(15), pages 1-42, August.
    19. Xingqi Zou & Qing Yang & Qinru Wang & Bin Jiang, 2024. "Measuring the system resilience of project portfolio network considering risk propagation," Annals of Operations Research, Springer, vol. 340(1), pages 693-721, September.
    20. Rippel, Daniel & Jathe, Nicolas & Lütjen, Michael & Szczerbicka, Helena & Freitag, Michael, 2019. "Integrated domain model for operative offshore installation planning," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), Digital Transformation in Maritime and City Logistics: Smart Solutions for Logistics. Proceedings of the Hamburg International Conference of Logistics, volume 28, pages 25-54, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:10:p:5478-:d:554222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.