IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i5p1427-d144570.html
   My bibliography  Save this article

Economic and Environmental Evaluation of a Brick Delivery System Based on Multi-Trip Vehicle Loader Routing Problem for Small Construction Sites

Author

Listed:
  • Heungjo An

    (Department of Industrial and Systems Engineering, Khalifa University of Science and Technology, 127788 Abu Dhabi, UAE)

  • Young-Ji Byon

    (Department of Civil Infrastructure & Environmental Engineering, Khalifa University of Science and Technology, 127788 Abu Dhabi, UAE)

  • Chung-Suk Cho

    (Department of Civil Infrastructure & Environmental Engineering, Khalifa University of Science and Technology, 127788 Abu Dhabi, UAE)

Abstract

While large construction sites have on-site loaders to handle heavy and large packages of bricks, small brick manufacturers employ a truck-mounted loader or sometimes deploy a loader truck to accompany normal brick delivery trucks to small construction sites lacking on-site loaders. It may be very challenging for small contractors to manage a sustainable delivery system that is both cost-effective and environmentally friendly. To address this issue, this paper proposes to solve a multi-trip vehicle loader routing problem by uniquely planning routes and schedules of several types of vehicles considering their synchronized operations at customer sites and multi trips. This paper also evaluates the sustainability of the developed model from both economic and environmental perspectives. Case studies based on small construction sites in the Middle East demonstrate applications of the proposed model to make the most economical plans for delivering bricks. Compared to the single-trip vehicle loader routing problem, the proposed model reduces, on average, 18.7% of the total delivery cost while increasing CO 2 emission negligibly. The economic benefit is mainly achieved by reducing the required number of vehicles. Brick plant managers can use the proposed mathematical model to plan the most cost-effective delivery schedules sustainably while minimizing negative environmental effects.

Suggested Citation

  • Heungjo An & Young-Ji Byon & Chung-Suk Cho, 2018. "Economic and Environmental Evaluation of a Brick Delivery System Based on Multi-Trip Vehicle Loader Routing Problem for Small Construction Sites," Sustainability, MDPI, vol. 10(5), pages 1-14, May.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:5:p:1427-:d:144570
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/5/1427/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/5/1427/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael Drexl, 2012. "Synchronization in Vehicle Routing---A Survey of VRPs with Multiple Synchronization Constraints," Transportation Science, INFORMS, vol. 46(3), pages 297-316, August.
    2. G. B. Dantzig & J. H. Ramser, 1959. "The Truck Dispatching Problem," Management Science, INFORMS, vol. 6(1), pages 80-91, October.
    3. Feng Guo & Qi Liu & Dunhu Liu & Zhaoxia Guo, 2017. "On Production and Green Transportation Coordination in a Sustainable Global Supply Chain," Sustainability, MDPI, vol. 9(11), pages 1-20, November.
    4. Brandao, Jose & Mercer, Alan, 1997. "A tabu search algorithm for the multi-trip vehicle routing and scheduling problem," European Journal of Operational Research, Elsevier, vol. 100(1), pages 180-191, July.
    5. Martin Desrochers & Jacques Desrosiers & Marius Solomon, 1992. "A New Optimization Algorithm for the Vehicle Routing Problem with Time Windows," Operations Research, INFORMS, vol. 40(2), pages 342-354, April.
    6. Diego Cattaruzza & Nabil Absi & Dominique Feillet, 2016. "The Multi-Trip Vehicle Routing Problem with Time Windows and Release Dates," Transportation Science, INFORMS, vol. 50(2), pages 676-693, May.
    7. Shoufeng Ji & Qi Sun, 2017. "Low-Carbon Planning and Design in B&R Logistics Service: A Case Study of an E-Commerce Big Data Platform in China," Sustainability, MDPI, vol. 9(11), pages 1-27, November.
    8. Aristide Mingozzi & Roberto Roberti & Paolo Toth, 2013. "An Exact Algorithm for the Multitrip Vehicle Routing Problem," INFORMS Journal on Computing, INFORMS, vol. 25(2), pages 193-207, May.
    9. Taesung Hwang & Yanfeng Ouyang, 2015. "Urban Freight Truck Routing under Stochastic Congestion and Emission Considerations," Sustainability, MDPI, vol. 7(6), pages 1-16, May.
    10. Chen, Lu & Langevin, André & Lu, Zhiqiang, 2013. "Integrated scheduling of crane handling and truck transportation in a maritime container terminal," European Journal of Operational Research, Elsevier, vol. 225(1), pages 142-152.
    11. Koç, Çağrı & Bektaş, Tolga & Jabali, Ola & Laporte, Gilbert, 2016. "Thirty years of heterogeneous vehicle routing," European Journal of Operational Research, Elsevier, vol. 249(1), pages 1-21.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boda Liu & Bin Yang & Jianzhuang Xiao & Dayu Zhu & Binghan Zhang & Zhichen Wang & Miaosi Dong, 2021. "Review of Optimization Dynamically Applied in the Construction and the Application Potential of ICT," Sustainability, MDPI, vol. 13(10), pages 1-18, May.
    2. Soares, Ricardo & Marques, Alexandra & Amorim, Pedro & Parragh, Sophie N., 2024. "Synchronisation in vehicle routing: Classification schema, modelling framework and literature review," European Journal of Operational Research, Elsevier, vol. 313(3), pages 817-840.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luciano Costa & Claudio Contardo & Guy Desaulniers, 2019. "Exact Branch-Price-and-Cut Algorithms for Vehicle Routing," Transportation Science, INFORMS, vol. 53(4), pages 946-985, July.
    2. You, Jintao & Wang, Yuan & Xue, Zhaojie, 2023. "An exact algorithm for the multi-trip container drayage problem with truck platooning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    3. Diego Cattaruzza & Nabil Absi & Dominique Feillet, 2018. "Vehicle routing problems with multiple trips," Annals of Operations Research, Springer, vol. 271(1), pages 127-159, December.
    4. Diego Cattaruzza & Nabil Absi & Dominique Feillet, 2016. "Vehicle routing problems with multiple trips," 4OR, Springer, vol. 14(3), pages 223-259, September.
    5. Tan, K.C. & Chew, Y.H. & Lee, L.H., 2006. "A hybrid multi-objective evolutionary algorithm for solving truck and trailer vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 172(3), pages 855-885, August.
    6. Fazi, Stefano & Choudhary, Sourabh Kumar & Dong, Jing-Xin, 2023. "The multi-trip container drayage problem with synchronization for efficient empty containers re-usage," European Journal of Operational Research, Elsevier, vol. 310(1), pages 343-359.
    7. Christian Brandstätter, 2021. "A metaheuristic algorithm and structured analysis for the Line-haul Feeder Vehicle Routing Problem with Time Windows," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(1), pages 247-289, March.
    8. Zhen, Lu & Ma, Chengle & Wang, Kai & Xiao, Liyang & Zhang, Wei, 2020. "Multi-depot multi-trip vehicle routing problem with time windows and release dates," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 135(C).
    9. Vidal, Thibaut & Laporte, Gilbert & Matl, Piotr, 2020. "A concise guide to existing and emerging vehicle routing problem variants," European Journal of Operational Research, Elsevier, vol. 286(2), pages 401-416.
    10. Liu, Shixin & Qin, Shujin & Zhang, Ruiyou, 2018. "A branch-and-price algorithm for the multi-trip multi-repairman problem with time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 25-41.
    11. J. Molina & A. D. López-Sánchez & A. G. Hernández-Díaz & I. Martínez-Salazar, 2018. "A Multi-start Algorithm with Intelligent Neighborhood Selection for solving multi-objective humanitarian vehicle routing problems," Journal of Heuristics, Springer, vol. 24(2), pages 111-133, April.
    12. Leggieri, Valeria & Haouari, Mohamed, 2017. "Lifted polynomial size formulations for the homogeneous and heterogeneous vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 263(3), pages 755-767.
    13. Babagolzadeh, Mahla & Zhang, Yahua & Abbasi, Babak & Shrestha, Anup & Zhang, Anming, 2022. "Promoting Australian regional airports with subsidy schemes: Optimised downstream logistics using vehicle routing problem," Transport Policy, Elsevier, vol. 128(C), pages 38-51.
    14. de Lima, Vinícius L. & Alves, Cláudio & Clautiaux, François & Iori, Manuel & Valério de Carvalho, José M., 2022. "Arc flow formulations based on dynamic programming: Theoretical foundations and applications," European Journal of Operational Research, Elsevier, vol. 296(1), pages 3-21.
    15. Cheng, Chun & Adulyasak, Yossiri & Rousseau, Louis-Martin, 2020. "Drone routing with energy function: Formulation and exact algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 364-387.
    16. Hernandez, Florent & Feillet, Dominique & Giroudeau, Rodolphe & Naud, Olivier, 2016. "Branch-and-price algorithms for the solution of the multi-trip vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 249(2), pages 551-559.
    17. Y H Lee & J I Kim & K H Kang & K H Kim, 2008. "A heuristic for vehicle fleet mix problem using tabu search and set partitioning," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(6), pages 833-841, June.
    18. Timo Gschwind & Stefan Irnich, 2012. "Effective Handling of Dynamic Time Windows and Synchronization with Precedences for Exact Vehicle Routing," Working Papers 1211, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    19. Arda, Yasemin & Cattaruzza, Diego & François, Véronique & Ogier, Maxime, 2024. "Home chemotherapy delivery: An integrated production scheduling and multi-trip vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 317(2), pages 468-486.
    20. Sana Jawarneh & Salwani Abdullah, 2015. "Sequential Insertion Heuristic with Adaptive Bee Colony Optimisation Algorithm for Vehicle Routing Problem with Time Windows," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-23, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:5:p:1427-:d:144570. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.