IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i5p1381-d143906.html
   My bibliography  Save this article

Optimizing the Construction Job Site Vehicle Scheduling Problem

Author

Listed:
  • Jaehyun Choi

    (Department of Architectural Engineering, Korea University of Technology and Education, 222 Engineering Building II, Chonan, Chungnam 31253, Korea)

  • Jia Xuelei

    (Department of Architectural Engineering, Korea University of Technology and Education, 222 Engineering Building II, Chonan, Chungnam 31253, Korea)

  • WoonSeong Jeong

    (Department of Architectural Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk 28644, Korea)

Abstract

Concrete is one of the most important, versatile, and widely used building materials worldwide. Thus, an optimized delivery schedule of ready-mixed concrete (RMC) is a critical issue that can reduce CO 2 emission from RMC delivery vehicles. RMC is the most popular form of concrete material supplied to construction projects. When delivering RMC to construction sites, optimizing the transportation can be complex since there are many alternatives in terms of route choice. The objective of this research was to optimize the travel operation of RMC delivery vehicles to ensure that they travel via the most economical routes. The researchers developed a dynamic simulation model to solve this vehicle scheduling problem (VSP), applied an ant colony optimization (ACO) algorithm as a mathematical model, and analyzed the results achieved by the basic and improved ACO methods; the goals were to reduce travel distance and improve the simulation’s performance. Ultimately, the researchers found that the improved ACO method provided a more optimized transportation solution with a higher level of efficiency.

Suggested Citation

  • Jaehyun Choi & Jia Xuelei & WoonSeong Jeong, 2018. "Optimizing the Construction Job Site Vehicle Scheduling Problem," Sustainability, MDPI, vol. 10(5), pages 1-13, April.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:5:p:1381-:d:143906
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/5/1381/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/5/1381/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. G. Clarke & J. W. Wright, 1964. "Scheduling of Vehicles from a Central Depot to a Number of Delivery Points," Operations Research, INFORMS, vol. 12(4), pages 568-581, August.
    2. Michel Gendreau & François Guertin & Jean-Yves Potvin & Éric Taillard, 1999. "Parallel Tabu Search for Real-Time Vehicle Routing and Dispatching," Transportation Science, INFORMS, vol. 33(4), pages 381-390, November.
    3. Michel Gendreau & Alain Hertz & Gilbert Laporte, 1994. "A Tabu Search Heuristic for the Vehicle Routing Problem," Management Science, INFORMS, vol. 40(10), pages 1276-1290, October.
    4. Soumia Ichoua & Michel Gendreau & Jean-Yves Potvin, 2000. "Diversion Issues in Real-Time Vehicle Dispatching," Transportation Science, INFORMS, vol. 34(4), pages 426-438, November.
    5. Gilbert Laporte & FranÇois V. Louveaux & Luc van Hamme, 2002. "An Integer L -Shaped Algorithm for the Capacitated Vehicle Routing Problem with Stochastic Demands," Operations Research, INFORMS, vol. 50(3), pages 415-423, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boda Liu & Bin Yang & Jianzhuang Xiao & Dayu Zhu & Binghan Zhang & Zhichen Wang & Miaosi Dong, 2021. "Review of Optimization Dynamically Applied in the Construction and the Application Potential of ICT," Sustainability, MDPI, vol. 13(10), pages 1-18, May.
    2. Abdul Salam Khan & Qazi Salman Khalid & Khawar Naeem & Rafiq Ahmad & Razaullah Khan & Waqas Saleem & Catalin Iulian Pruncu, 2021. "Application of Exact and Multi-Heuristic Approaches to a Sustainable Closed Loop Supply Chain Network Design," Sustainability, MDPI, vol. 13(5), pages 1-25, February.
    3. Dudu Guo & Yinuo Su & Xiaojiang Zhang & Zhen Yang & Pengbin Duan, 2024. "Multi-Objective Optimization of Short-Inverted Transport Scheduling Strategy Based on Road–Railway Intermodal Transport," Sustainability, MDPI, vol. 16(15), pages 1-25, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du, Timon C. & Li, Eldon Y. & Chou, Defrose, 2005. "Dynamic vehicle routing for online B2C delivery," Omega, Elsevier, vol. 33(1), pages 33-45, February.
    2. Gao, Shangce & Wang, Yirui & Cheng, Jiujun & Inazumi, Yasuhiro & Tang, Zheng, 2016. "Ant colony optimization with clustering for solving the dynamic location routing problem," Applied Mathematics and Computation, Elsevier, vol. 285(C), pages 149-173.
    3. Briseida Sarasola & Karl Doerner & Verena Schmid & Enrique Alba, 2016. "Variable neighborhood search for the stochastic and dynamic vehicle routing problem," Annals of Operations Research, Springer, vol. 236(2), pages 425-461, January.
    4. Pillac, Victor & Gendreau, Michel & Guéret, Christelle & Medaglia, Andrés L., 2013. "A review of dynamic vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 225(1), pages 1-11.
    5. Briseida Sarasola & Karl F. Doerner & Verena Schmid & Enrique Alba, 2016. "Variable neighborhood search for the stochastic and dynamic vehicle routing problem," Annals of Operations Research, Springer, vol. 236(2), pages 425-461, January.
    6. Cortes, Juan David & Suzuki, Yoshinori, 2020. "Vehicle Routing with Shipment Consolidation," International Journal of Production Economics, Elsevier, vol. 227(C).
    7. Gong, Manlin & Hu, Yucong & Chen, Zhiwei & Li, Xiaopeng, 2021. "Transfer-based customized modular bus system design with passenger-route assignment optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    8. Novoa, Clara & Storer, Robert, 2009. "An approximate dynamic programming approach for the vehicle routing problem with stochastic demands," European Journal of Operational Research, Elsevier, vol. 196(2), pages 509-515, July.
    9. Marlin W. Ulmer & Justin C. Goodson & Dirk C. Mattfeld & Marco Hennig, 2019. "Offline–Online Approximate Dynamic Programming for Dynamic Vehicle Routing with Stochastic Requests," Service Science, INFORMS, vol. 53(1), pages 185-202, February.
    10. César Rego, 1998. "A Subpath Ejection Method for the Vehicle Routing Problem," Management Science, INFORMS, vol. 44(10), pages 1447-1459, October.
    11. Müller, Juliane, 2010. "Approximative solutions to the bicriterion Vehicle Routing Problem with Time Windows," European Journal of Operational Research, Elsevier, vol. 202(1), pages 223-231, April.
    12. Barrett W. Thomas & Chelsea C. White, 2004. "Anticipatory Route Selection," Transportation Science, INFORMS, vol. 38(4), pages 473-487, November.
    13. Bian, Zheyong & Liu, Xiang, 2019. "Mechanism design for first-mile ridesharing based on personalized requirements part II: Solution algorithm for large-scale problems," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 172-192.
    14. Javier Faulin & Pablo Sarobe & Jorge Simal, 2005. "The DSS LOGDIS Optimizes Delivery Routes for FRILAC’s Frozen Products," Interfaces, INFORMS, vol. 35(3), pages 202-214, June.
    15. Olli Bräysy & Michel Gendreau, 2005. "Vehicle Routing Problem with Time Windows, Part II: Metaheuristics," Transportation Science, INFORMS, vol. 39(1), pages 119-139, February.
    16. Zhang, Jian & Woensel, Tom Van, 2023. "Dynamic vehicle routing with random requests: A literature review," International Journal of Production Economics, Elsevier, vol. 256(C).
    17. Joaquín Pacheco & Rafael Caballero & Manuel Laguna & Julián Molina, 2013. "Bi-Objective Bus Routing: An Application to School Buses in Rural Areas," Transportation Science, INFORMS, vol. 47(3), pages 397-411, August.
    18. C D Tarantilis & G Ioannou & C T Kiranoudis & G P Prastacos, 2005. "Solving the open vehicle routeing problem via a single parameter metaheuristic algorithm," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(5), pages 588-596, May.
    19. A A Juan & J Faulin & J Jorba & D Riera & D Masip & B Barrios, 2011. "On the use of Monte Carlo simulation, cache and splitting techniques to improve the Clarke and Wright savings heuristics," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(6), pages 1085-1097, June.
    20. Renaud, Jacques & Boctor, Fayez F., 2002. "A sweep-based algorithm for the fleet size and mix vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 140(3), pages 618-628, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:5:p:1381-:d:143906. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.