IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i4p1514-d322080.html
   My bibliography  Save this article

Prediction of Risk Delay in Construction Projects Using a Hybrid Artificial Intelligence Model

Author

Listed:
  • Zaher Mundher Yaseen

    (Sustainable Developments in Civil Engineering Research Group, Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam)

  • Zainab Hasan Ali

    (Civil Engineering Department, College of Engineering, University of Diyala, Baquba 32001, Iraq)

  • Sinan Q. Salih

    (Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam)

  • Nadhir Al-Ansari

    (Civil, Environmental and Natural Resources Engineering, Lulea University of Technology, 97187 Lulea, Sweden)

Abstract

Project delays are the major problems tackled by the construction sector owing to the associated complexity and uncertainty in the construction activities. Artificial Intelligence (AI) models have evidenced their capacity to solve dynamic, uncertain and complex tasks. The aim of this current study is to develop a hybrid artificial intelligence model called integrative Random Forest classifier with Genetic Algorithm optimization (RF-GA) for delay problem prediction. At first, related sources and factors of delay problems are identified. A questionnaire is adopted to quantify the impact of delay sources on project performance. The developed hybrid model is trained using the collected data of the previous construction projects. The proposed RF-GA is validated against the classical version of an RF model using statistical performance measure indices. The achieved results of the developed hybrid RF-GA model revealed a good resultant performance in terms of accuracy, kappa and classification error. Based on the measured accuracy, kappa and classification error, RF-GA attained 91.67%, 87% and 8.33%, respectively. Overall, the proposed methodology indicated a robust and reliable technique for project delay prediction that is contributing to the construction project management monitoring and sustainability.

Suggested Citation

  • Zaher Mundher Yaseen & Zainab Hasan Ali & Sinan Q. Salih & Nadhir Al-Ansari, 2020. "Prediction of Risk Delay in Construction Projects Using a Hybrid Artificial Intelligence Model," Sustainability, MDPI, vol. 12(4), pages 1-14, February.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:4:p:1514-:d:322080
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/4/1514/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/4/1514/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Seyed Amir Naghibi & Kourosh Ahmadi & Alireza Daneshi, 2017. "Application of Support Vector Machine, Random Forest, and Genetic Algorithm Optimized Random Forest Models in Groundwater Potential Mapping," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(9), pages 2761-2775, July.
    2. Onur Dursun & Christian Stoy, 2011. "Time-cost relationship of building projects: statistical adequacy of categorization with respect to project location," Construction Management and Economics, Taylor & Francis Journals, vol. 29(1), pages 97-106.
    3. Zaher Mundher Yaseen & Mohammad Ehteram & Md. Shabbir Hossain & Chow Ming Fai & Suhana Binti Koting & Nuruol Syuhadaa Mohd & Wan Zurina Binti Jaafar & Haitham Abdulmohsin Afan & Lai Sai Hin & Nuratiah, 2019. "A Novel Hybrid Evolutionary Data-Intelligence Algorithm for Irrigation and Power Production Management: Application to Multi-Purpose Reservoir Systems," Sustainability, MDPI, vol. 11(7), pages 1-28, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmed Farouk Kineber & Idris Othman & Ayodeji Emmanuel Oke & Nicholas Chileshe & Mohanad Kamil Buniya, 2020. "Identifying and Assessing Sustainable Value Management Implementation Activities in Developing Countries: The Case of Egypt," Sustainability, MDPI, vol. 12(21), pages 1-20, November.
    2. Ke Wang & Ziyi Ying & Shankha Shubhra Goswami & Yongsheng Yin & Yafei Zhao, 2023. "Investigating the Role of Artificial Intelligence Technologies in the Construction Industry Using a Delphi-ANP-TOPSIS Hybrid MCDM Concept under a Fuzzy Environment," Sustainability, MDPI, vol. 15(15), pages 1-42, August.
    3. Marija Z. Ivanović & Đorđe Nedeljković & Zoran Stojadinović & Dejan Marinković & Nenad Ivanišević & Nevena Simić, 2022. "Detection and In-Depth Analysis of Causes of Delay in Construction Projects: Synergy between Machine Learning and Expert Knowledge," Sustainability, MDPI, vol. 14(22), pages 1-23, November.
    4. Boda Liu & Bin Yang & Jianzhuang Xiao & Dayu Zhu & Binghan Zhang & Zhichen Wang & Miaosi Dong, 2021. "Review of Optimization Dynamically Applied in the Construction and the Application Potential of ICT," Sustainability, MDPI, vol. 13(10), pages 1-18, May.
    5. Carlos Araújo-Rey & Miguel A. Sebastián, 2021. "An Approach to the Analysis of Causes of Delays in Industrial Construction Projects through Planning and Statistical Computing," Sustainability, MDPI, vol. 13(7), pages 1-21, April.
    6. Musa Mohammed & Nasir Shafiq & Al-Baraa Abdulrahman Al-Mekhlafi & Ehab Farouk Rashed & Mohamed Hassan Khalil & Noor Amila Zawawi & Abubakar Muhammad & Aminu Mubarak Sadis, 2022. "The Mediating Role of Policy-Related Factors in the Relationship between Practice of Waste Generation and Sustainable Construction Waste Minimisation: PLS-SEM," Sustainability, MDPI, vol. 14(2), pages 1-21, January.
    7. Ahmed Farouk Kineber & Ayodeji Emmanuel Oke & Ashraf Alyanbaawi & Abdurrahman Salihu Abubakar & Mohammed Magdy Hamed, 2022. "Exploring the Cloud Computing Implementation Drivers for Sustainable Construction Projects—A Structural Equation Modeling Approach," Sustainability, MDPI, vol. 14(22), pages 1-31, November.
    8. Steven J. Schuldt & Mathew R. Nicholson & Yaquarri A. Adams & Justin D. Delorit, 2021. "Weather-Related Construction Delays in a Changing Climate: A Systematic State-of-the-Art Review," Sustainability, MDPI, vol. 13(5), pages 1-25, March.
    9. Ahmed Farouk Kineber & Shah Siddharth & Nicholas Chileshe & Badr Alsolami & Mohammed Magdy Hamed, 2022. "Addressing of Value Management Implementation Barriers within the Indian Construction Industry: A PLS-SEM Approach," Sustainability, MDPI, vol. 14(24), pages 1-24, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Viet-Tien Nguyen & Trong Hien Tran & Ngoc Anh Ha & Van Liem Ngo & Al-Ansari Nadhir & Van Phong Tran & Huu Duy Nguyen & Malek M. A. & Ata Amini & Indra Prakash & Lanh Si Ho & Binh Thai Pham, 2019. "GIS Based Novel Hybrid Computational Intelligence Models for Mapping Landslide Susceptibility: A Case Study at Da Lat City, Vietnam," Sustainability, MDPI, vol. 11(24), pages 1-24, December.
    2. Mohammad Ehteram & Ali Najah Ahmed & Chow Ming Fai & Haitham Abdulmohsin Afan & Ahmed El-Shafie, 2019. "Accuracy Enhancement for Zone Mapping of a Solar Radiation Forecasting Based Multi-Objective Model for Better Management of the Generation of Renewable Energy," Energies, MDPI, vol. 12(14), pages 1-26, July.
    3. Madhumita Sahoo & Aman Kasot & Anirban Dhar & Amlanjyoti Kar, 2018. "On Predictability of Groundwater Level in Shallow Wells Using Satellite Observations," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(4), pages 1225-1244, March.
    4. Costa, Ana & Guerreiro, João & Moro, Sérgio & Henriques, Roberto, 2019. "Unfolding the characteristics of incentivized online reviews," Journal of Retailing and Consumer Services, Elsevier, vol. 47(C), pages 272-281.
    5. Weiyu Yu & Nicola A Wardrop & Robert E S Bain & Victor Alegana & Laura J Graham & Jim A Wright, 2019. "Mapping access to domestic water supplies from incomplete data in developing countries: An illustrative assessment for Kenya," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-19, May.
    6. Changjun Yin & Yunfei Liu & Dongwei Gui & Yi Liu & Wengai Lv, 2022. "A Study on Evaporation Calculations of Agricultural Reservoirs in Hyper-Arid Areas," Agriculture, MDPI, vol. 12(5), pages 1-16, April.
    7. Fatima Zahra Echogdali & Said Boutaleb & Rosine Basseu Kpan & Mohammed Ouchchen & Amine Bendarma & Hasna El Ayady & Kamal Abdelrahman & Mohammed S. Fnais & Kochappi Sathyan Sajinkumar & Mohamed Abioui, 2022. "Application of Fuzzy Logic and Fractal Modeling Approach for Groundwater Potential Mapping in Semi-Arid Akka Basin, Southeast Morocco," Sustainability, MDPI, vol. 14(16), pages 1-17, August.
    8. Zohreh Sherafatpour & Abbas Roozbahani & Yousef Hasani, 2019. "Agricultural Water Allocation by Integration of Hydro-Economic Modeling with Bayesian Networks and Random Forest Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(7), pages 2277-2299, May.
    9. Mehrdad Jeihouni & Ara Toomanian & Ali Mansourian, 2020. "Decision Tree-Based Data Mining and Rule Induction for Identifying High Quality Groundwater Zones to Water Supply Management: a Novel Hybrid Use of Data Mining and GIS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(1), pages 139-154, January.
    10. Xiaolin Chu & Dong Yang & Jia Li, 2019. "Sustainability Assessment of Combined Cooling, Heating, and Power Systems under Carbon Emission Regulations," Sustainability, MDPI, vol. 11(21), pages 1-17, October.
    11. Li Yang & Xin Fang & Xue Wang & Shanshan Li & Junqi Zhu, 2022. "Risk Prediction of Coal and Gas Outburst in Deep Coal Mines Based on the SAPSO-ELM Algorithm," IJERPH, MDPI, vol. 19(19), pages 1-18, September.
    12. Guanyin Shuai & Yan Zhou & Jingli Shao & Yali Cui & Qiulan Zhang & Chaowei Jin & Shuyuan Xu, 2024. "Comparison of Multiple Machine Learning Methods for Correcting Groundwater Levels Predicted by Physics-Based Models," Sustainability, MDPI, vol. 16(2), pages 1-18, January.
    13. Ali Mokhtar & Nadhir Al-Ansari & Wessam El-Ssawy & Renata Graf & Pouya Aghelpour & Hongming He & Salma M. Hafez & Mohamed Abuarab, 2023. "Prediction of Irrigation Water Requirements for Green Beans-Based Machine Learning Algorithm Models in Arid Region," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(4), pages 1557-1580, March.
    14. Karbasi, Masoud & Jamei, Mehdi & Ali, Mumtaz & Malik, Anurag & Chu, Xuefeng & Farooque, Aitazaz Ahsan & Yaseen, Zaher Mundher, 2023. "Development of an enhanced bidirectional recurrent neural network combined with time-varying filter-based empirical mode decomposition to forecast weekly reference evapotranspiration," Agricultural Water Management, Elsevier, vol. 290(C).
    15. Patricia Jimeno-Sáez & Javier Senent-Aparicio & José M. Cecilia & Julio Pérez-Sánchez, 2020. "Using Machine-Learning Algorithms for Eutrophication Modeling: Case Study of Mar Menor Lagoon (Spain)," IJERPH, MDPI, vol. 17(4), pages 1-14, February.
    16. Indrajit Mandal & Swades Pal, 2022. "Assessing the impact of ecological insecurity on ecosystem service value in stone quarrying and crushing dominated areas," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(10), pages 11760-11784, October.
    17. Maryam Akbari & Sarita Gajbhiye Meshram & R. S Krishna & Biswajeet Pradhan & Sameer Shadeed & Khaled Mohamed Khedher & Mehdi Sepehri & Ali Reza Ildoromi & Fereshteh Alimerzaei & Fariba Darabi, 2021. "Identification of the Groundwater Potential Recharge Zones Using MCDM Models: Full Consistency Method (FUCOM), Best Worst Method (BWM) and Analytic Hierarchy Process (AHP)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(14), pages 4727-4745, November.
    18. Sohaib K. M. Abujayyab & Khaled H. Almotairi & Mohammed Alswaitti & Salem S. Abu Amr & Abbas F. M. Alkarkhi & Enes Taşoğlu & Ahmad MohdAziz Hussein, 2021. "Effects of Meteorological Parameters on Surface Water Loss in Burdur Lake, Turkey over 34 Years Landsat Google Earth Engine Time-Series," Land, MDPI, vol. 10(12), pages 1-18, November.
    19. Yong Ye & Wei Chen & Guirong Wang & Weifeng Xue, 2022. "Spatial Prediction of the Groundwater Potential Using Remote Sensing Data and Bivariate Statistical-Based Artificial Intelligence Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(14), pages 5461-5494, November.
    20. Abhinav Kumar Singh & Pankaj Kumar & Rawshan Ali & Nadhir Al-Ansari & Dinesh Kumar Vishwakarma & Kuldeep Singh Kushwaha & Kanhu Charan Panda & Atish Sagar & Ehsan Mirzania & Ahmed Elbeltagi & Alban Ku, 2022. "An Integrated Statistical-Machine Learning Approach for Runoff Prediction," Sustainability, MDPI, vol. 14(13), pages 1-30, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:4:p:1514-:d:322080. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.