IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i21p5917-d279989.html
   My bibliography  Save this article

Sustainability Assessment of Combined Cooling, Heating, and Power Systems under Carbon Emission Regulations

Author

Listed:
  • Xiaolin Chu

    (Glorious Sun School of Business and Management, Donghua University, Shanghai 200051, China)

  • Dong Yang

    (Glorious Sun School of Business and Management, Donghua University, Shanghai 200051, China)

  • Jia Li

    (Glorious Sun School of Business and Management, Donghua University, Shanghai 200051, China)

Abstract

The combined cooling, heating, and power (CCHP) system, which is a sustainable distributed energy system, has attracted increasing attention due to the associated economic, environmental, and energy benefits. Currently, the enforcement of carbon emission regulations has become an increasingly concerning issue globally. In this paper, a multi-objective optimization model is established to evaluate the CCHP system under two different carbon emission regulation policies in terms of economic benefit, environmental sustainability, and energy advantage. A nonlinear programming optimization model is formulated and solved by using the particle swarm optimization (PSO) algorithm. The results from the case studies demonstrate that when considering carbon tax regulation, the cost savings of the optimal CCHP system strategy were on average 10.0%, 9.1%, 17.0%, 22.1%, and 20.9% for the office, supermarket, hotel, school, and hospital in China, respectively, compared with the conventional energy supply system. On the other hand, when considering carbon trading regulation, the optimal CCHP system strategy can lead to a 10.0%, 8.9%, 16.8%, 21.6%, and 20.5% cost-saving for the five different building categories, respectively. Furthermore, the optimal CCHP system strategy for the five buildings, i.e., an average of 39.6% carbon dioxide emission (CDE) reduction and 26.5% primary energy consumption (PEC) saving, can be achieved under carbon emission regulations.

Suggested Citation

  • Xiaolin Chu & Dong Yang & Jia Li, 2019. "Sustainability Assessment of Combined Cooling, Heating, and Power Systems under Carbon Emission Regulations," Sustainability, MDPI, vol. 11(21), pages 1-17, October.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:21:p:5917-:d:279989
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/21/5917/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/21/5917/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. He, Liangce & Lu, Zhigang & Zhang, Jiangfeng & Geng, Lijun & Zhao, Hao & Li, Xueping, 2018. "Low-carbon economic dispatch for electricity and natural gas systems considering carbon capture systems and power-to-gas," Applied Energy, Elsevier, vol. 224(C), pages 357-370.
    2. Hou, Qinlong & Zhao, Hongbin & Yang, Xiaoyu, 2019. "Economic performance study of the integrated MR-SOFC-CCHP system," Energy, Elsevier, vol. 166(C), pages 236-245.
    3. Richard L. Revesz & Peter H. Howard & Kenneth Arrow & Lawrence H. Goulder & Robert E. Kopp & Michael A. Livermore & Michael Oppenheimer & Thomas Sterner, 2014. "Global warming: Improve economic models of climate change," Nature, Nature, vol. 508(7495), pages 173-175, April.
    4. Ren, Hongbo & Gao, Weijun, 2010. "A MILP model for integrated plan and evaluation of distributed energy systems," Applied Energy, Elsevier, vol. 87(3), pages 1001-1014, March.
    5. Afzali, Sayyed Faridoddin & Mahalec, Vladimir, 2018. "Novel performance curves to determine optimal operation of CCHP systems," Applied Energy, Elsevier, vol. 226(C), pages 1009-1036.
    6. Hu, Mengqi & Cho, Heejin, 2014. "A probability constrained multi-objective optimization model for CCHP system operation decision support," Applied Energy, Elsevier, vol. 116(C), pages 230-242.
    7. Yang, Jun & He, Lifu & Fu, Siyao, 2014. "An improved PSO-based charging strategy of electric vehicles in electrical distribution grid," Applied Energy, Elsevier, vol. 128(C), pages 82-92.
    8. Ahn, Hyeunguk & Freihaut, James D. & Rim, Donghyun, 2019. "Economic feasibility of combined cooling, heating, and power (CCHP) systems considering electricity standby tariffs," Energy, Elsevier, vol. 169(C), pages 420-432.
    9. Kang, Ligai & Yang, Junhong & An, Qingsong & Deng, Shuai & Zhao, Jun & Wang, Hui & Li, Zelin, 2017. "Effects of load following operational strategy on CCHP system with an auxiliary ground source heat pump considering carbon tax and electricity feed in tariff," Applied Energy, Elsevier, vol. 194(C), pages 454-466.
    10. Li, Xiaohong & Yang, Dong & Hu, Mengqi, 2018. "A scenario-based stochastic programming approach for the product configuration problem under uncertainties and carbon emission regulations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 115(C), pages 126-146.
    11. Wang, Jiangjiang & Lu, Zherui & Li, Meng & Lior, Noam & Li, Weihua, 2019. "Energy, exergy, exergoeconomic and environmental (4E) analysis of a distributed generation solar-assisted CCHP (combined cooling, heating and power) gas turbine system," Energy, Elsevier, vol. 175(C), pages 1246-1258.
    12. Wu, Qiong & Ren, Hongbo & Gao, Weijun & Ren, Jianxing, 2016. "Multi-criteria assessment of building combined heat and power systems located in different climate zones: Japan–China comparison," Energy, Elsevier, vol. 103(C), pages 502-512.
    13. Yidan Chen & Yuwei Sun & Can Wang, 2018. "Influencing Factors of Companies’ Behavior for Mitigation: A Discussion within the Context of Emission Trading Scheme," Sustainability, MDPI, vol. 10(2), pages 1-15, February.
    14. Zaher Mundher Yaseen & Mohammad Ehteram & Md. Shabbir Hossain & Chow Ming Fai & Suhana Binti Koting & Nuruol Syuhadaa Mohd & Wan Zurina Binti Jaafar & Haitham Abdulmohsin Afan & Lai Sai Hin & Nuratiah, 2019. "A Novel Hybrid Evolutionary Data-Intelligence Algorithm for Irrigation and Power Production Management: Application to Multi-Purpose Reservoir Systems," Sustainability, MDPI, vol. 11(7), pages 1-28, April.
    15. Li, Longxi & Yu, Shiwei & Mu, Hailin & Li, Huanan, 2018. "Optimization and evaluation of CCHP systems considering incentive policies under different operation strategies," Energy, Elsevier, vol. 162(C), pages 825-840.
    16. Luo, Xing & Wang, Jihong & Dooner, Mark & Clarke, Jonathan, 2015. "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Applied Energy, Elsevier, vol. 137(C), pages 511-536.
    17. Xu Zhao & Qianjun Lin & Hao Yu, 2019. "An Improved Mathematical Model for Green Lock Scheduling Problem of the Three Gorges Dam," Sustainability, MDPI, vol. 11(9), pages 1-23, May.
    18. Jing, Rui & Wang, Meng & Brandon, Nigel & Zhao, Yingru, 2017. "Multi-criteria evaluation of solid oxide fuel cell based combined cooling heating and power (SOFC-CCHP) applications for public buildings in China," Energy, Elsevier, vol. 141(C), pages 273-289.
    19. He, Chao & Zhang, Quanguo & Ren, Jingzheng & Li, Zhaoling, 2017. "Combined cooling heating and power systems: Sustainability assessment under uncertainties," Energy, Elsevier, vol. 139(C), pages 755-766.
    20. Dai, Rui & Hu, Mengqi & Yang, Dong & Chen, Yang, 2015. "A collaborative operation decision model for distributed building clusters," Energy, Elsevier, vol. 84(C), pages 759-773.
    21. Wang, Lang & Lu, Jianfeng & Wang, Weilong & Ding, Jing, 2016. "Energy, environmental and economic evaluation of the CCHP systems for a remote island in south of China," Applied Energy, Elsevier, vol. 183(C), pages 874-883.
    22. Haisheng Chen & Xinjing Zhang & Jinchao Liu & Chunqing Tan, 2013. "Compressed Air Energy Storage," Chapters, in: Ahmed F. Zobaa (ed.), Energy Storage - Technologies and Applications, IntechOpen.
    23. Dan Liu & Zhenghong Deng & Qipeng Sun & Yong Wang & Yinhai Wang, 2019. "Design and Freight Corridor-Fleet Size Choice in Collaborative Intermodal Transportation Network Considering Economies of Scale," Sustainability, MDPI, vol. 11(4), pages 1-19, February.
    24. Zhitao Xu & Adel Elomri & Shaligram Pokharel & Fatih Mutlu, 2019. "The Design of Green Supply Chains under Carbon Policies: A Literature Review of Quantitative Models," Sustainability, MDPI, vol. 11(11), pages 1-20, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lee, Peoy Ying & Liew, Peng Yen & Walmsley, Timothy Gordon & Wan Alwi, Sharifah Rafidah & Klemeš, Jiří Jaromír, 2020. "Total Site Heat and Power Integration for Locally Integrated Energy Sectors," Energy, Elsevier, vol. 204(C).
    2. Liting Zhang & Weijun Gao & Yongwen Yang & Fanyue Qian, 2020. "Impacts of Investment Cost, Energy Prices and Carbon Tax on Promoting the Combined Cooling, Heating and Power (CCHP) System of an Amusement Park Resort in Shanghai," Energies, MDPI, vol. 13(16), pages 1-22, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, W.D. & Shao, Y.L. & Bui, D.T. & Huang, Z.F. & Chua, K.J., 2024. "Development of novel optimal operating maps for combined cooling, heating, and power systems," Applied Energy, Elsevier, vol. 358(C).
    2. Gao, Lei & Hwang, Yunho & Cao, Tao, 2019. "An overview of optimization technologies applied in combined cooling, heating and power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    3. Zhang, Chong & Xue, Xue & Du, Qianzhou & Luo, Yimo & Gang, Wenjie, 2019. "Study on the performance of distributed energy systems based on historical loads considering parameter uncertainties for decision making," Energy, Elsevier, vol. 176(C), pages 778-791.
    4. Afzali, Sayyed Faridoddin & Cotton, James S. & Mahalec, Vladimir, 2020. "Urban community energy systems design under uncertainty for specified levels of carbon dioxide emissions," Applied Energy, Elsevier, vol. 259(C).
    5. Gao, Jiajia & Kang, Jing & Zhang, Chong & Gang, Wenjie, 2018. "Energy performance and operation characteristics of distributed energy systems with district cooling systems in subtropical areas under different control strategies," Energy, Elsevier, vol. 153(C), pages 849-860.
    6. Xiaolin Chu & Yuntian Ge & Xue Zhou & Lin Li & Dong Yang, 2020. "Modeling and Analysis of Electric Vehicle-Power Grid-Manufacturing Facility (EPM) Energy Sharing System under Time-of-Use Electricity Tariff," Sustainability, MDPI, vol. 12(12), pages 1-27, June.
    7. Chen, Long Xiang & Xie, Mei Na & Zhao, Pan Pan & Wang, Feng Xiang & Hu, Peng & Wang, Dong Xiang, 2018. "A novel isobaric adiabatic compressed air energy storage (IA-CAES) system on the base of volatile fluid," Applied Energy, Elsevier, vol. 210(C), pages 198-210.
    8. Cheayb, Mohamad & Marin Gallego, Mylène & Tazerout, Mohand & Poncet, Sébastien, 2022. "A techno-economic analysis of small-scale trigenerative compressed air energy storage system," Energy, Elsevier, vol. 239(PA).
    9. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    10. Dib, Ghady & Haberschill, Philippe & Rullière, Romuald & Revellin, Rémi, 2021. "Modelling small-scale trigenerative advanced adiabatic compressed air energy storage for building application," Energy, Elsevier, vol. 237(C).
    11. Guo, Cong & Xu, Yujie & Zhang, Xinjing & Guo, Huan & Zhou, Xuezhi & Liu, Chang & Qin, Wei & Li, Wen & Dou, Binlin & Chen, Haisheng, 2017. "Performance analysis of compressed air energy storage systems considering dynamic characteristics of compressed air storage," Energy, Elsevier, vol. 135(C), pages 876-888.
    12. Zhang, Han & Han, Zhonghe & Wu, Di & Li, Peng & Li, Peng, 2023. "Energy optimization and performance analysis of a novel integrated energy system coupled with solar thermal unit and preheated organic cycle under extended following electric load strategy," Energy, Elsevier, vol. 272(C).
    13. Li, Ruonan & Mahalec, Vladimir, 2022. "Integrated design and operation of energy systems for residential buildings, commercial buildings, and light industries," Applied Energy, Elsevier, vol. 305(C).
    14. Meng, Hui & Wang, Meihong & Olumayegun, Olumide & Luo, Xiaobo & Liu, Xiaoyan, 2019. "Process design, operation and economic evaluation of compressed air energy storage (CAES) for wind power through modelling and simulation," Renewable Energy, Elsevier, vol. 136(C), pages 923-936.
    15. He, Yang & Chen, Haisheng & Xu, Yujie & Deng, Jianqiang, 2018. "Compression performance optimization considering variable charge pressure in an adiabatic compressed air energy storage system," Energy, Elsevier, vol. 165(PB), pages 349-359.
    16. Zhang, Na & Wang, Zefeng & Lior, Noam & Han, Wei, 2018. "Advancement of distributed energy methods by a novel high efficiency solar-assisted combined cooling, heating and power system," Applied Energy, Elsevier, vol. 219(C), pages 179-186.
    17. Fu, Hailun & He, Qing & Song, Jintao & Shi, Xinping & Hao, Yinping & Du, Dongmei & Liu, Wenyi, 2021. "Thermodynamic of a novel advanced adiabatic compressed air energy storage system with variable pressure ratio coupled organic rankine cycle," Energy, Elsevier, vol. 227(C).
    18. Weitzel, Timm & Glock, Christoph H., 2018. "Energy management for stationary electric energy storage systems: A systematic literature review," European Journal of Operational Research, Elsevier, vol. 264(2), pages 582-606.
    19. Wang, Liang & Lin, Xipeng & Chai, Lei & Peng, Long & Yu, Dong & Chen, Haisheng, 2019. "Cyclic transient behavior of the Joule–Brayton based pumped heat electricity storage: Modeling and analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 523-534.
    20. Pang, Kang Ying & Liew, Peng Yen & Woon, Kok Sin & Ho, Wai Shin & Wan Alwi, Sharifah Rafidah & Klemeš, Jiří Jaromír, 2023. "Multi-period multi-objective optimisation model for multi-energy urban-industrial symbiosis with heat, cooling, power and hydrogen demands," Energy, Elsevier, vol. 262(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:21:p:5917-:d:279989. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.