IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i24p7118-d297086.html
   My bibliography  Save this article

GIS Based Novel Hybrid Computational Intelligence Models for Mapping Landslide Susceptibility: A Case Study at Da Lat City, Vietnam

Author

Listed:
  • Viet-Tien Nguyen

    (Institute of Geological Sciences, Vietnam Academy of Science and Technology, 84 Chua Lang, Dong da, Hanoi 100000, Vietnam
    Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam)

  • Trong Hien Tran

    (Institute of Geological Sciences, Vietnam Academy of Science and Technology, 84 Chua Lang, Dong da, Hanoi 100000, Vietnam)

  • Ngoc Anh Ha

    (Institute of Geological Sciences, Vietnam Academy of Science and Technology, 84 Chua Lang, Dong da, Hanoi 100000, Vietnam)

  • Van Liem Ngo

    (Faculty of Geography, VNU University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi 100000, Vietnam)

  • Al-Ansari Nadhir

    (Department of Civil, Environmental and Natural Resources Engineering, Lulea University of Technology, 971 87 Lulea, Sweden)

  • Van Phong Tran

    (Institute of Geological Sciences, Vietnam Academy of Science and Technology, 84 Chua Lang, Dong da, Hanoi 100000, Vietnam)

  • Huu Duy Nguyen

    (Faculty of Geography, VNU University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi 100000, Vietnam)

  • Malek M. A.

    (Institute of Sustainable Energy, University Tenaga Nasional, Selangor 43000, Malaysia)

  • Ata Amini

    (Kurdistan Agricultural and Natural Resources Research and Education Center, AREEO, Sanandaj 66177-15175, Iran)

  • Indra Prakash

    (Department of Science and Technology, Bhaskarcharya Institute for Space Applications and Geo-Informatics (BISAG), Government of Gujarat, Gandhinagar 382007, India)

  • Lanh Si Ho

    (Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam)

  • Binh Thai Pham

    (University of Transport Technology, Hanoi 100000, Vietnam)

Abstract

Landslides affect properties and the lives of a large number of people in many hilly parts of Vietnam and in the world. Damages caused by landslides can be reduced by understanding distribution, nature, mechanisms and causes of landslides with the help of model studies for better planning and risk management of the area. Development of landslide susceptibility maps is one of the main steps in landslide management. In this study, the main objective is to develop GIS based hybrid computational intelligence models to generate landslide susceptibility maps of the Da Lat province, which is one of the landslide prone regions of Vietnam. Novel hybrid models of alternating decision trees (ADT) with various ensemble methods, namely bagging, dagging, MultiBoostAB, and RealAdaBoost, were developed namely B-ADT, D-ADT, MBAB-ADT, RAB-ADT, respectively. Data of 72 past landslide events was used in conjunction with 11 landslide conditioning factors (curvature, distance from geological boundaries, elevation, land use, Normalized Difference Vegetation Index (NDVI), relief amplitude, stream density, slope, lithology, weathering crust and soil) in the development and validation of the models. Area under the receiver operating characteristic (ROC) curve (AUC), and several statistical measures were applied to validate these models. Results indicated that performance of all the models was good (AUC value greater than 0.8) but B-ADT model performed the best (AUC= 0.856). Landslide susceptibility maps generated using the proposed models would be helpful to decision makers in the risk management for land use planning and infrastructure development.

Suggested Citation

  • Viet-Tien Nguyen & Trong Hien Tran & Ngoc Anh Ha & Van Liem Ngo & Al-Ansari Nadhir & Van Phong Tran & Huu Duy Nguyen & Malek M. A. & Ata Amini & Indra Prakash & Lanh Si Ho & Binh Thai Pham, 2019. "GIS Based Novel Hybrid Computational Intelligence Models for Mapping Landslide Susceptibility: A Case Study at Da Lat City, Vietnam," Sustainability, MDPI, vol. 11(24), pages 1-24, December.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:24:p:7118-:d:297086
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/24/7118/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/24/7118/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Seyed Amir Naghibi & Kourosh Ahmadi & Alireza Daneshi, 2017. "Application of Support Vector Machine, Random Forest, and Genetic Algorithm Optimized Random Forest Models in Groundwater Potential Mapping," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(9), pages 2761-2775, July.
    2. Binh Thai Pham & Ataollah Shirzadi & Himan Shahabi & Ebrahim Omidvar & Sushant K. Singh & Mehebub Sahana & Dawood Talebpour Asl & Baharin Bin Ahmad & Nguyen Kim Quoc & Saro Lee, 2019. "Landslide Susceptibility Assessment by Novel Hybrid Machine Learning Algorithms," Sustainability, MDPI, vol. 11(16), pages 1-25, August.
    3. Hamid Pourghasemi & Biswajeet Pradhan & Candan Gokceoglu, 2012. "Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 965-996, September.
    4. Binh Thai Pham & Dieu Tien Bui & Indra Prakash & M. B. Dholakia, 2016. "Rotation forest fuzzy rule-based classifier ensemble for spatial prediction of landslides using GIS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 97-127, August.
    5. Saeid Janizadeh & Mohammadtaghi Avand & Abolfazl Jaafari & Tran Van Phong & Mahmoud Bayat & Ebrahim Ahmadisharaf & Indra Prakash & Binh Thai Pham & Saro Lee, 2019. "Prediction Success of Machine Learning Methods for Flash Flood Susceptibility Mapping in the Tafresh Watershed, Iran," Sustainability, MDPI, vol. 11(19), pages 1-19, September.
    6. Maxx Dilley & Robert S. Chen & Uwe Deichmann & Arthur L. Lerner-Lam & Margaret Arnold, 2005. "Natural Disaster Hotspots: A Global Risk Analysis," World Bank Publications - Books, The World Bank Group, number 7376.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Phong Tung Nguyen & Duong Hai Ha & Abolfazl Jaafari & Huu Duy Nguyen & Tran Van Phong & Nadhir Al-Ansari & Indra Prakash & Hiep Van Le & Binh Thai Pham, 2020. "Groundwater Potential Mapping Combining Artificial Neural Network and Real AdaBoost Ensemble Technique: The DakNong Province Case-study, Vietnam," IJERPH, MDPI, vol. 17(7), pages 1-20, April.
    2. Yigen Qin & Genlan Yang & Kunpeng Lu & Qianzheng Sun & Jin Xie & Yunwu Wu, 2021. "Performance Evaluation of Five GIS-Based Models for Landslide Susceptibility Prediction and Mapping: A Case Study of Kaiyang County, China," Sustainability, MDPI, vol. 13(11), pages 1-20, June.
    3. Langping Li & Hengxing Lan, 2020. "Integration of Spatial Probability and Size in Slope-Unit-Based Landslide Susceptibility Assessment: A Case Study," IJERPH, MDPI, vol. 17(21), pages 1-17, November.
    4. Phong Tung Nguyen & Duong Hai Ha & Huu Duy Nguyen & Tran Van Phong & Phan Trong Trinh & Nadhir Al-Ansari & Hiep Van Le & Binh Thai Pham & Lanh Si Ho & Indra Prakash, 2020. "Improvement of Credal Decision Trees Using Ensemble Frameworks for Groundwater Potential Modeling," Sustainability, MDPI, vol. 12(7), pages 1-28, March.
    5. Md. Uzzal Mia & Tahmida Naher Chowdhury & Rabin Chakrabortty & Subodh Chandra Pal & Mohammad Khalid Al-Sadoon & Romulus Costache & Abu Reza Md. Towfiqul Islam, 2023. "Flood Susceptibility Modeling Using an Advanced Deep Learning-Based Iterative Classifier Optimizer," Land, MDPI, vol. 12(4), pages 1-26, April.
    6. Sk Ajim Ali & Farhana Parvin & Quoc Bao Pham & Khaled Mohamed Khedher & Mahro Dehbozorgi & Yasin Wahid Rabby & Duong Tran Anh & Duc Hiep Nguyen, 2022. "An ensemble random forest tree with SVM, ANN, NBT, and LMT for landslide susceptibility mapping in the Rangit River watershed, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(3), pages 1601-1633, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Viet-Ha Nhu & Ataollah Shirzadi & Himan Shahabi & Sushant K. Singh & Nadhir Al-Ansari & John J. Clague & Abolfazl Jaafari & Wei Chen & Shaghayegh Miraki & Jie Dou & Chinh Luu & Krzysztof Górski & Binh, 2020. "Shallow Landslide Susceptibility Mapping: A Comparison between Logistic Model Tree, Logistic Regression, Naïve Bayes Tree, Artificial Neural Network, and Support Vector Machine Algorithms," IJERPH, MDPI, vol. 17(8), pages 1-30, April.
    2. Phong Tung Nguyen & Duong Hai Ha & Huu Duy Nguyen & Tran Van Phong & Phan Trong Trinh & Nadhir Al-Ansari & Hiep Van Le & Binh Thai Pham & Lanh Si Ho & Indra Prakash, 2020. "Improvement of Credal Decision Trees Using Ensemble Frameworks for Groundwater Potential Modeling," Sustainability, MDPI, vol. 12(7), pages 1-28, March.
    3. Hyung-Sup Jung & Saro Lee & Biswajeet Pradhan, 2020. "Sustainable Applications of Remote Sensing and Geospatial Information Systems to Earth Observations," Sustainability, MDPI, vol. 12(6), pages 1-6, March.
    4. Phong Tung Nguyen & Duong Hai Ha & Abolfazl Jaafari & Huu Duy Nguyen & Tran Van Phong & Nadhir Al-Ansari & Indra Prakash & Hiep Van Le & Binh Thai Pham, 2020. "Groundwater Potential Mapping Combining Artificial Neural Network and Real AdaBoost Ensemble Technique: The DakNong Province Case-study, Vietnam," IJERPH, MDPI, vol. 17(7), pages 1-20, April.
    5. Viet-Ha Nhu & Ayub Mohammadi & Himan Shahabi & Baharin Bin Ahmad & Nadhir Al-Ansari & Ataollah Shirzadi & John J. Clague & Abolfazl Jaafari & Wei Chen & Hoang Nguyen, 2020. "Landslide Susceptibility Mapping Using Machine Learning Algorithms and Remote Sensing Data in a Tropical Environment," IJERPH, MDPI, vol. 17(14), pages 1-23, July.
    6. Rachida Senouci & Nasr-Eddine Taibi & Ana Cláudia Teodoro & Lia Duarte & Hamidi Mansour & Rabia Yahia Meddah, 2021. "GIS-Based Expert Knowledge for Landslide Susceptibility Mapping (LSM): Case of Mostaganem Coast District, West of Algeria," Sustainability, MDPI, vol. 13(2), pages 1-21, January.
    7. Indrajit Chowdhuri & Subodh Chandra Pal & Rabin Chakrabortty & Sadhan Malik & Biswajit Das & Paramita Roy, 2021. "Torrential rainfall-induced landslide susceptibility assessment using machine learning and statistical methods of eastern Himalaya," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 697-722, May.
    8. Yong Ye & Wei Chen & Guirong Wang & Weifeng Xue, 2022. "Spatial Prediction of the Groundwater Potential Using Remote Sensing Data and Bivariate Statistical-Based Artificial Intelligence Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(14), pages 5461-5494, November.
    9. Sk Ajim Ali & Farhana Parvin & Quoc Bao Pham & Khaled Mohamed Khedher & Mahro Dehbozorgi & Yasin Wahid Rabby & Duong Tran Anh & Duc Hiep Nguyen, 2022. "An ensemble random forest tree with SVM, ANN, NBT, and LMT for landslide susceptibility mapping in the Rangit River watershed, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(3), pages 1601-1633, September.
    10. Henrich Grežo & Matej Močko & Martin Izsóff & Gréta Vrbičanová & František Petrovič & Jozef Straňák & Zlatica Muchová & Martina Slámová & Branislav Olah & Ivo Machar, 2020. "Flood Risk Assessment for the Long-Term Strategic Planning Considering the Placement of Industrial Parks in Slovakia," Sustainability, MDPI, vol. 12(10), pages 1-20, May.
    11. Xiaobing Yu & Hong Chen & Chenliang Li, 2019. "Evaluate Typhoon Disasters in 21st Century Maritime Silk Road by Super-Efficiency DEA," IJERPH, MDPI, vol. 16(9), pages 1-10, May.
    12. Binh Thai Pham & Chongchong Qi & Lanh Si Ho & Trung Nguyen-Thoi & Nadhir Al-Ansari & Manh Duc Nguyen & Huu Duy Nguyen & Hai-Bang Ly & Hiep Van Le & Indra Prakash, 2020. "A Novel Hybrid Soft Computing Model Using Random Forest and Particle Swarm Optimization for Estimation of Undrained Shear Strength of Soil," Sustainability, MDPI, vol. 12(6), pages 1-16, March.
    13. Nicolás Bronfman & Pamela Cisternas & Esperanza López-Vázquez & Luis Cifuentes, 2016. "Trust and risk perception of natural hazards: implications for risk preparedness in Chile," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 307-327, March.
    14. Eseosa Halima Ighile & Hiroaki Shirakawa & Hiroki Tanikawa, 2022. "Application of GIS and Machine Learning to Predict Flood Areas in Nigeria," Sustainability, MDPI, vol. 14(9), pages 1-33, April.
    15. Dapeng Huang & Renhe Zhang & Zhiguo Huo & Fei Mao & Youhao E & Wei Zheng, 2012. "An assessment of multidimensional flood vulnerability at the provincial scale in China based on the DEA method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 1575-1586, November.
    16. Txomin Bornaetxea & Juan Remondo & Jaime Bonachea & Pablo Valenzuela, 2023. "Exploring available landslide inventories for susceptibility analysis in Gipuzkoa province (Spain)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 2513-2542, September.
    17. Gökhan Demir & Mustafa Aytekin & Aykut Akgün & Sabriye İkizler & Orhan Tatar, 2013. "A comparison of landslide susceptibility mapping of the eastern part of the North Anatolian Fault Zone (Turkey) by likelihood-frequency ratio and analytic hierarchy process methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 1481-1506, February.
    18. Rui Yuan & Jing Chen, 2022. "A hybrid deep learning method for landslide susceptibility analysis with the application of InSAR data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1393-1426, November.
    19. Md. Uzzal Mia & Tahmida Naher Chowdhury & Rabin Chakrabortty & Subodh Chandra Pal & Mohammad Khalid Al-Sadoon & Romulus Costache & Abu Reza Md. Towfiqul Islam, 2023. "Flood Susceptibility Modeling Using an Advanced Deep Learning-Based Iterative Classifier Optimizer," Land, MDPI, vol. 12(4), pages 1-26, April.
    20. Aubin VIGNOBOUL, 2022. "The winds of inequalities: How hurricanes impact inequalities at the macro level?," LEO Working Papers / DR LEO 2986, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:24:p:7118-:d:297086. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.