IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i5p612-d802705.html
   My bibliography  Save this article

A Study on Evaporation Calculations of Agricultural Reservoirs in Hyper-Arid Areas

Author

Listed:
  • Changjun Yin

    (State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
    Cele National Station of Observation & Research for Desert Grassland Ecosystem in Xinjiang, Cele 848300, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Yunfei Liu

    (State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
    Cele National Station of Observation & Research for Desert Grassland Ecosystem in Xinjiang, Cele 848300, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Dongwei Gui

    (State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
    Cele National Station of Observation & Research for Desert Grassland Ecosystem in Xinjiang, Cele 848300, China)

  • Yi Liu

    (State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
    Cele National Station of Observation & Research for Desert Grassland Ecosystem in Xinjiang, Cele 848300, China)

  • Wengai Lv

    (State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
    Cele National Station of Observation & Research for Desert Grassland Ecosystem in Xinjiang, Cele 848300, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract

Free surface evaporation is an important process in regional water cycles and energy balance. The accurate calculation of free surface evaporation is of great significance for evaluating and managing water resources. In order to improve the accuracy of estimating reservoir evaporation in data-scarce arid regions, the applicability of the energy balance method was assessed to calculate water surface evaporation based on the evaporator and reservoir evaporation experiment. A correlation analysis was used to assess the major meteorological factors that affect water surface temperature to obtain the critical parameters of the machine learning models. The water surface temperature was simulated using five machine learning algorithms, and the accuracy of results was evaluated using the root mean square error (RMSE), correlation coefficient (r), mean absolute error (MAE), and Nash efficiency coefficient (NSE) between observed value and calculated value. The results showed that the correlation coefficient between the evaporation capacity of the evaporator, calculated using the energy balance method and the observed evaporation capacity, was 0.946, and the RMSE was 0.279. The r value between the calculated value of the reservoir evaporation capacity and the observed value was 0.889, and the RMSE was 0.241. The meteorological factors related to the change in water surface temperature were air temperature, air pressure, relative humidity, net radiation and wind speed. The correlation coefficients were 0.554, −0.548, −0.315, −0.227, and 0.141, respectively. The RMSE and MAE values of five models were: RF (0.464 and 0.336), LSSVM (0.468 and 0.340), LSTM (1.567 and 1.186), GA-BP (0.709 and 0.558), and CNN (1.113 and 0.962). In summary, the energy balance method could accurately calculate the evaporation of evaporators and reservoirs in hyper-arid areas. As an important calculation parameter, the water surface temperature is most affected by air temperature, and the RF algorithm was superior to the other algorithms in predicting water surface temperature, and it could be used to predict the missing data. The energy balance model and random forest algorithm can be used to accurately calculate and predict the evaporation from reservoirs in hyper-arid areas, so as to make the rational allocation of reservoir water resources.

Suggested Citation

  • Changjun Yin & Yunfei Liu & Dongwei Gui & Yi Liu & Wengai Lv, 2022. "A Study on Evaporation Calculations of Agricultural Reservoirs in Hyper-Arid Areas," Agriculture, MDPI, vol. 12(5), pages 1-16, April.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:5:p:612-:d:802705
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/5/612/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/5/612/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Seyed Amir Naghibi & Kourosh Ahmadi & Alireza Daneshi, 2017. "Application of Support Vector Machine, Random Forest, and Genetic Algorithm Optimized Random Forest Models in Groundwater Potential Mapping," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(9), pages 2761-2775, July.
    2. Jenny Cifuentes & Geovanny Marulanda & Antonio Bello & Javier Reneses, 2020. "Air Temperature Forecasting Using Machine Learning Techniques: A Review," Energies, MDPI, vol. 13(16), pages 1-28, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elianne Mora & Jenny Cifuentes & Geovanny Marulanda, 2021. "Short-Term Forecasting of Wind Energy: A Comparison of Deep Learning Frameworks," Energies, MDPI, vol. 14(23), pages 1-26, November.
    2. Viet-Tien Nguyen & Trong Hien Tran & Ngoc Anh Ha & Van Liem Ngo & Al-Ansari Nadhir & Van Phong Tran & Huu Duy Nguyen & Malek M. A. & Ata Amini & Indra Prakash & Lanh Si Ho & Binh Thai Pham, 2019. "GIS Based Novel Hybrid Computational Intelligence Models for Mapping Landslide Susceptibility: A Case Study at Da Lat City, Vietnam," Sustainability, MDPI, vol. 11(24), pages 1-24, December.
    3. Madhumita Sahoo & Aman Kasot & Anirban Dhar & Amlanjyoti Kar, 2018. "On Predictability of Groundwater Level in Shallow Wells Using Satellite Observations," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(4), pages 1225-1244, March.
    4. Costa, Ana & Guerreiro, João & Moro, Sérgio & Henriques, Roberto, 2019. "Unfolding the characteristics of incentivized online reviews," Journal of Retailing and Consumer Services, Elsevier, vol. 47(C), pages 272-281.
    5. Cristian Napole & Oscar Barambones & Mohamed Derbeli & José Antonio Cortajarena & Isidro Calvo & Patxi Alkorta & Pablo Fernandez Bustamante, 2021. "Double Fed Induction Generator Control Design Based on a Fuzzy Logic Controller for an Oscillating Water Column System," Energies, MDPI, vol. 14(12), pages 1-19, June.
    6. Weiyu Yu & Nicola A Wardrop & Robert E S Bain & Victor Alegana & Laura J Graham & Jim A Wright, 2019. "Mapping access to domestic water supplies from incomplete data in developing countries: An illustrative assessment for Kenya," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-19, May.
    7. Fatima Zahra Echogdali & Said Boutaleb & Rosine Basseu Kpan & Mohammed Ouchchen & Amine Bendarma & Hasna El Ayady & Kamal Abdelrahman & Mohammed S. Fnais & Kochappi Sathyan Sajinkumar & Mohamed Abioui, 2022. "Application of Fuzzy Logic and Fractal Modeling Approach for Groundwater Potential Mapping in Semi-Arid Akka Basin, Southeast Morocco," Sustainability, MDPI, vol. 14(16), pages 1-17, August.
    8. Zaher Mundher Yaseen & Zainab Hasan Ali & Sinan Q. Salih & Nadhir Al-Ansari, 2020. "Prediction of Risk Delay in Construction Projects Using a Hybrid Artificial Intelligence Model," Sustainability, MDPI, vol. 12(4), pages 1-14, February.
    9. Zohreh Sherafatpour & Abbas Roozbahani & Yousef Hasani, 2019. "Agricultural Water Allocation by Integration of Hydro-Economic Modeling with Bayesian Networks and Random Forest Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(7), pages 2277-2299, May.
    10. Mehrdad Jeihouni & Ara Toomanian & Ali Mansourian, 2020. "Decision Tree-Based Data Mining and Rule Induction for Identifying High Quality Groundwater Zones to Water Supply Management: a Novel Hybrid Use of Data Mining and GIS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(1), pages 139-154, January.
    11. Li Yang & Xin Fang & Xue Wang & Shanshan Li & Junqi Zhu, 2022. "Risk Prediction of Coal and Gas Outburst in Deep Coal Mines Based on the SAPSO-ELM Algorithm," IJERPH, MDPI, vol. 19(19), pages 1-18, September.
    12. Rana Muhammad Adnan & Sarita Gajbhiye Meshram & Reham R. Mostafa & Abu Reza Md. Towfiqul Islam & S. I. Abba & Francis Andorful & Zhihuan Chen, 2023. "Application of Advanced Optimized Soft Computing Models for Atmospheric Variable Forecasting," Mathematics, MDPI, vol. 11(5), pages 1-29, March.
    13. Guanyin Shuai & Yan Zhou & Jingli Shao & Yali Cui & Qiulan Zhang & Chaowei Jin & Shuyuan Xu, 2024. "Comparison of Multiple Machine Learning Methods for Correcting Groundwater Levels Predicted by Physics-Based Models," Sustainability, MDPI, vol. 16(2), pages 1-18, January.
    14. Ali Mokhtar & Nadhir Al-Ansari & Wessam El-Ssawy & Renata Graf & Pouya Aghelpour & Hongming He & Salma M. Hafez & Mohamed Abuarab, 2023. "Prediction of Irrigation Water Requirements for Green Beans-Based Machine Learning Algorithm Models in Arid Region," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(4), pages 1557-1580, March.
    15. Karbasi, Masoud & Jamei, Mehdi & Ali, Mumtaz & Malik, Anurag & Chu, Xuefeng & Farooque, Aitazaz Ahsan & Yaseen, Zaher Mundher, 2023. "Development of an enhanced bidirectional recurrent neural network combined with time-varying filter-based empirical mode decomposition to forecast weekly reference evapotranspiration," Agricultural Water Management, Elsevier, vol. 290(C).
    16. Patricia Jimeno-Sáez & Javier Senent-Aparicio & José M. Cecilia & Julio Pérez-Sánchez, 2020. "Using Machine-Learning Algorithms for Eutrophication Modeling: Case Study of Mar Menor Lagoon (Spain)," IJERPH, MDPI, vol. 17(4), pages 1-14, February.
    17. Indrajit Mandal & Swades Pal, 2022. "Assessing the impact of ecological insecurity on ecosystem service value in stone quarrying and crushing dominated areas," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(10), pages 11760-11784, October.
    18. Maryam Akbari & Sarita Gajbhiye Meshram & R. S Krishna & Biswajeet Pradhan & Sameer Shadeed & Khaled Mohamed Khedher & Mehdi Sepehri & Ali Reza Ildoromi & Fereshteh Alimerzaei & Fariba Darabi, 2021. "Identification of the Groundwater Potential Recharge Zones Using MCDM Models: Full Consistency Method (FUCOM), Best Worst Method (BWM) and Analytic Hierarchy Process (AHP)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(14), pages 4727-4745, November.
    19. Sohaib K. M. Abujayyab & Khaled H. Almotairi & Mohammed Alswaitti & Salem S. Abu Amr & Abbas F. M. Alkarkhi & Enes Taşoğlu & Ahmad MohdAziz Hussein, 2021. "Effects of Meteorological Parameters on Surface Water Loss in Burdur Lake, Turkey over 34 Years Landsat Google Earth Engine Time-Series," Land, MDPI, vol. 10(12), pages 1-18, November.
    20. Ahmed M. Elshewey & Mahmoud Y. Shams & Abdelghafar M. Elhady & Samaa M. Shohieb & Abdelaziz A. Abdelhamid & Abdelhameed Ibrahim & Zahraa Tarek, 2022. "A Novel WD-SARIMAX Model for Temperature Forecasting Using Daily Delhi Climate Dataset," Sustainability, MDPI, vol. 15(1), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:5:p:612-:d:802705. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.