IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i7p3975-d529402.html
   My bibliography  Save this article

An Approach to the Analysis of Causes of Delays in Industrial Construction Projects through Planning and Statistical Computing

Author

Listed:
  • Carlos Araújo-Rey

    (Department of Construction and Manufacturing Engineering, Universidad Nacional de Educación a Distancia (UNED), C/ Juan del Rosal, 12, 28040 Madrid, Spain)

  • Miguel A. Sebastián

    (Department of Construction and Manufacturing Engineering, Universidad Nacional de Educación a Distancia (UNED), C/ Juan del Rosal, 12, 28040 Madrid, Spain)

Abstract

The analysis of the planning activities of industrial construction projects can help to evaluate some of the causes that have an impact on the variation of execution times and can also contribute to identifying those activities and components that are most likely to experience or cause delays. Data analysis is facilitated by the use of techniques based on statistical programs, allowing delays to be unequivocally linked to the different elements that make up these projects. In a theoretical study, a simulation is carried out with data that are hypothetical but consistent with real projects, which are transformed and standardized before being uploaded to the statistical software. Using the statistical software’s graphical interface, the data set is analyzed from a descriptive point of view, unraveling the relationships between variables and factors by means of contingency tables and scatter plots. Using other techniques such as the comparison of variables and correlation studies, as well as linear regression and variance analysis, the characteristics are evaluated and the differences in project delays are investigated in order to determine, after the fact, which components have the highest rates of delay in execution times.

Suggested Citation

  • Carlos Araújo-Rey & Miguel A. Sebastián, 2021. "An Approach to the Analysis of Causes of Delays in Industrial Construction Projects through Planning and Statistical Computing," Sustainability, MDPI, vol. 13(7), pages 1-21, April.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:7:p:3975-:d:529402
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/7/3975/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/7/3975/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zaher Mundher Yaseen & Zainab Hasan Ali & Sinan Q. Salih & Nadhir Al-Ansari, 2020. "Prediction of Risk Delay in Construction Projects Using a Hybrid Artificial Intelligence Model," Sustainability, MDPI, vol. 12(4), pages 1-14, February.
    2. Byung-Yun Son & Eul-Bum Lee, 2019. "Using Text Mining to Estimate Schedule Delay Risk of 13 Offshore Oil and Gas EPC Case Studies During the Bidding Process," Energies, MDPI, vol. 12(10), pages 1-25, May.
    3. Jesus Javier Losada-Maseda & Laura Castro-Santos & Manuel Ángel Graña-López & Ana Isabel García-Diez & Almudena Filgueira-Vizoso, 2020. "Analysis of Contracts to Build Energy Infrastructures to Optimize the OPEX," Sustainability, MDPI, vol. 12(17), pages 1-17, September.
    4. Yujing Yang & Wenzhe Tang & Wenxin Shen & Tengfei Wang, 2019. "Enhancing Risk Management by Partnering in International EPC Projects: Perspective from Evolutionary Game in Chinese Construction Companies," Sustainability, MDPI, vol. 11(19), pages 1-16, September.
    5. Daekyoung Yi & Eul-Bum Lee & Junyong Ahn, 2019. "Onshore Oil and Gas Design Schedule Management Process Through Time-Impact Simulations Analyses," Sustainability, MDPI, vol. 11(6), pages 1-19, March.
    6. Myung-Hun Kim & Eul-Bum Lee & Han-Suk Choi, 2019. "A Forecast and Mitigation Model of Construction Performance by Assessing Detailed Engineering Maturity at Key Milestones for Offshore EPC Mega-Projects," Sustainability, MDPI, vol. 11(5), pages 1-21, February.
    7. Myung-Hun Kim & Eul-Bum Lee, 2019. "A Forecast Model for the Level of Engineering Maturity Impact on Contractor’s Procurement and Construction Costs for Offshore EPC Megaprojects," Energies, MDPI, vol. 12(12), pages 1-18, June.
    8. José R. San Cristóbal & Luis Carral & Emma Diaz & José A. Fraguela & Gregorio Iglesias, 2018. "Complexity and Project Management: A General Overview," Complexity, Hindawi, vol. 2018, pages 1-10, October.
    9. Edwin Thomas Banobi & Wooyong Jung, 2019. "Causes and Mitigation Strategies of Delay in Power Construction Projects: Gaps between Owners and Contractors in Successful and Unsuccessful Projects," Sustainability, MDPI, vol. 11(21), pages 1-16, October.
    10. Callegari, C. & Szklo, A. & Schaeffer, R., 2018. "Cost overruns and delays in energy megaprojects: How big is big enough?," Energy Policy, Elsevier, vol. 114(C), pages 211-220.
    11. Goutom K. Pall & Adrian J. Bridge & Jason Gray & Martin Skitmore, 2019. "Causes of Delay in Power Transmission Projects: An Empirical Study," Energies, MDPI, vol. 13(1), pages 1-29, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Usman Ismaila & Wooyong Jung & Chan Young Park, 2022. "Delay Causes and Types in Nigerian Power Construction Projects," Energies, MDPI, vol. 15(3), pages 1-16, January.
    2. Hui-Ping Tserng & I-Cheng Cho & Chun-Hung Chen & Yu-Fan Liu, 2021. "Developing a Risk Management Process for Infrastructure Projects Using IDEF0," Sustainability, MDPI, vol. 13(12), pages 1-22, June.
    3. Min-Ji Park & Eul-Bum Lee & Seung-Yeab Lee & Jong-Hyun Kim, 2021. "A Digitalized Design Risk Analysis Tool with Machine-Learning Algorithm for EPC Contractor’s Technical Specifications Assessment on Bidding," Energies, MDPI, vol. 14(18), pages 1-31, September.
    4. Marija Z. Ivanović & Đorđe Nedeljković & Zoran Stojadinović & Dejan Marinković & Nenad Ivanišević & Nevena Simić, 2022. "Detection and In-Depth Analysis of Causes of Delay in Construction Projects: Synergy between Machine Learning and Expert Knowledge," Sustainability, MDPI, vol. 14(22), pages 1-23, November.
    5. Georgios K. Koulinas & Alexandros S. Xanthopoulos & Konstantinos A. Sidas & Dimitrios E. Koulouriotis, 2021. "Risks Ranking in a Desalination Plant Construction Project with a Hybrid AHP, Risk Matrix, and Simulation-Based Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(10), pages 3221-3233, August.
    6. Gumber, Anurag & Zana, Riccardo & Steffen, Bjarne, 2024. "A global analysis of renewable energy project commissioning timelines," Applied Energy, Elsevier, vol. 358(C).
    7. Rajesh Savio, 2022. "Between Success and Failure: Integrating Agile Project Management Methods with PRINCE2 Framework for the Enhanced Management of Imperfect Projects," Eximia Journal, Plus Communication Consulting SRL, vol. 5(1), pages 24-32, July.
    8. Mohammad Ajmal Nikjow & Li Liang & Xijing Qi & Samad Sepasgozar, 2021. "Engineering Procurement Construction in the Context of Belt and Road Infrastructure Projects in West Asia: A SWOT Analysis," JRFM, MDPI, vol. 14(3), pages 1-17, February.
    9. Ahmed Farouk Kineber & Shah Siddharth & Nicholas Chileshe & Badr Alsolami & Mohammed Magdy Hamed, 2022. "Addressing of Value Management Implementation Barriers within the Indian Construction Industry: A PLS-SEM Approach," Sustainability, MDPI, vol. 14(24), pages 1-24, December.
    10. Ke Wang & Ziyi Ying & Shankha Shubhra Goswami & Yongsheng Yin & Yafei Zhao, 2023. "Investigating the Role of Artificial Intelligence Technologies in the Construction Industry Using a Delphi-ANP-TOPSIS Hybrid MCDM Concept under a Fuzzy Environment," Sustainability, MDPI, vol. 15(15), pages 1-42, August.
    11. Anuja Shaktawat & Shelly Vadhera, 2021. "Risk management of hydropower projects for sustainable development: a review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 45-76, January.
    12. Galván, Antonio & Haas, Jannik & Moreno-Leiva, Simón & Osorio-Aravena, Juan Carlos & Nowak, Wolfgang & Palma-Benke, Rodrigo & Breyer, Christian, 2022. "Exporting sunshine: Planning South America’s electricity transition with green hydrogen," Applied Energy, Elsevier, vol. 325(C).
    13. Diniz, Bruno Andrade & Szklo, Alexandre & Tolmasquim, Maurício T. & Schaeffer, Roberto, 2023. "Delays in the construction of power plants from electricity auctions in Brazil," Energy Policy, Elsevier, vol. 175(C).
    14. Simshauser, P. & Gohde, N., 2024. "3-Party Covenant Financing of ‘Semi-Regulated’ Pumped Hydro Assets," Cambridge Working Papers in Economics 2425, Faculty of Economics, University of Cambridge.
    15. Zhao Zhai & Ming Shan & Amos Darko & Albert P. C. Chan, 2021. "Corruption in Construction Projects: Bibliometric Analysis of Global Research," Sustainability, MDPI, vol. 13(8), pages 1-21, April.
    16. Katharina Löhr & Custódio Efraim Matavel & Sophia Tadesse & Masoud Yazdanpanah & Stefan Sieber & Nadejda Komendantova, 2022. "Just Energy Transition: Learning from the Past for a More Just and Sustainable Hydrogen Transition in West Africa," Land, MDPI, vol. 11(12), pages 1-23, December.
    17. Jarosław Górecki & Manuel Díaz-Madroñero, 2020. "Who Risks and Wins?—Simulated Cost Variance in Sustainable Construction Projects," Sustainability, MDPI, vol. 12(8), pages 1-31, April.
    18. Boda Liu & Bin Yang & Jianzhuang Xiao & Dayu Zhu & Binghan Zhang & Zhichen Wang & Miaosi Dong, 2021. "Review of Optimization Dynamically Applied in the Construction and the Application Potential of ICT," Sustainability, MDPI, vol. 13(10), pages 1-18, May.
    19. González-Varona, José M. & Martín-Cruz, Natalia & Acebes, Fernando & Pajares, Javier, 2023. "How public funding affects complexity in R&D projects. An analysis of team project perceptions," Journal of Business Research, Elsevier, vol. 158(C).
    20. Jaroslav Vrchota & Petr Řehoř & Monika Maříková & Martin Pech, 2020. "Critical Success Factors of the Project Management in Relation to Industry 4.0 for Sustainability of Projects," Sustainability, MDPI, vol. 13(1), pages 1-19, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:7:p:3975-:d:529402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.