IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i18p7574-d413493.html
   My bibliography  Save this article

Improving Water Distribution Uniformity by Optimizing the Structural Size of the Drive Spoon Blades for a Vertical Impact Sprinkler

Author

Listed:
  • Pan Tang

    (Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, China)

  • Chao Chen

    (Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, China)

  • Hong Li

    (Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, China)

Abstract

The aim of this study is to improve the water distribution uniformity of a vertical impact sprinkler and explore the design method of the drive spoon blades. The width of straight blades ( h 1 ), the width of curved blades ( h 2 ) and number of blades ( s ) were chosen as the experiential variables. The suitable ranges of three variables for response surface method were determined initially by one-factor experimental design method, and 17 different drive spoons were designed according to response surface methodology. The results showed that in the one-factor experimental condition, the CU (Christiansen’s uniformity coefficient) values first increased and decreased slightly when h 1 exceeded 3 mm with the increase of h 1 within the variation range of the experimental factor. The CU values firstly increased and then decreased with the increase of h 2 . The CU values decreased rapidly when s was less than 3 or greater than 6. The relationship between CU values and h 1 , h 2 and s was established using response surface methodology. The p -values for h 1 , h 2 and s were 0.0359, 0.0092, 0.0212, and all of the selected factors were significant on CU. The order of parameters affecting CU were h 2 , h 1 and s . The ideal parameters for the drive spoon blades were h 1 = 6 mm, h 2 = 4 mm, and s = 3. CU was greatly improved after the optimization of structure for the drive spoon blades, which increased to 87.96% from 73.12%. After optimization, the application rates within 1 to 5 m were improved and increased from 10% to 15% with an average of 10.7% under different operating pressures. The maximum application rates decreased from 9.3, 9.3, 9.4 and 8.4 mm·h −1 to 8.5, 8.4, 8.5 and 7.9 mm·h −1 with operating pressures of 300, 400, 500 and 600 kPa, respectively. The maximum application rates in the overlap area were decreased from 18, 16, 16 and 15 mm·h −1 to 16, 14, 14 and 12 mm·h −1 with operating pressures of 300, 400, 500 and 600 kPa, respectively.

Suggested Citation

  • Pan Tang & Chao Chen & Hong Li, 2020. "Improving Water Distribution Uniformity by Optimizing the Structural Size of the Drive Spoon Blades for a Vertical Impact Sprinkler," Sustainability, MDPI, vol. 12(18), pages 1-13, September.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:18:p:7574-:d:413493
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/18/7574/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/18/7574/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sheikhesmaeili, Omid & Montero, Jesús & Laserna, Santiago, 2016. "Analysis of water application with semi-portable big size sprinkler irrigation systems in semi-arid areas," Agricultural Water Management, Elsevier, vol. 163(C), pages 275-284.
    2. Robles, O. & Playán, E. & Cavero, J. & Zapata, N., 2017. "Assessing low-pressure solid-set sprinkler irrigation in maize," Agricultural Water Management, Elsevier, vol. 191(C), pages 37-49.
    3. Ibrahim Shaba Mohammed & Risu Na & Keisuke Kushima & Naoto Shimizu, 2020. "Investigating the Effect of Processing Parameters on the Products of Hydrothermal Carbonization of Corn Stover," Sustainability, MDPI, vol. 12(12), pages 1-21, June.
    4. Zapata, N. & Robles, O. & Playán, E. & Paniagua, P. & Romano, C. & Salvador, R. & Montoya, F., 2018. "Low-pressure sprinkler irrigation in maize: Differences in water distribution above and below the crop canopy," Agricultural Water Management, Elsevier, vol. 203(C), pages 353-365.
    5. Ge, Maosheng & Wu, Pute & Zhu, Delan & Zhang, Lin, 2020. "Comparisons of spray characteristics between vertical impact and turbine drive sprinklers—A case study of the 50PYC and HY50 big gun-type sprinklers," Agricultural Water Management, Elsevier, vol. 228(C).
    6. AL-Kayssi, A.W. & Mustafa, S.H., 2016. "Modeling gypsifereous soil infiltration rate under different sprinkler application rates and successive irrigation events," Agricultural Water Management, Elsevier, vol. 163(C), pages 66-74.
    7. Ge, Maosheng & Wu, Pute & Zhu, Delan & Zhang, Lin & Cai, Yaohui, 2020. "Optimized configuration of a hose reel traveling irrigator," Agricultural Water Management, Elsevier, vol. 240(C).
    8. Nascimento, A.K & Schwartz, R.C. & Lima, F.A & López-Mata, E. & Domínguez, A. & Izquiel, A. & Tarjuelo, J.M & Martínez-Romero, A, 2019. "Effects of irrigation uniformity on yield response and production economics of maize in a semiarid zone," Agricultural Water Management, Elsevier, vol. 211(C), pages 178-189.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Rui & Zheng, Changjuan & Zhu, Delan & Wu, Pute & Liu, Yichuan & Zhang, Xiaomin & Khudayberdi, Nazarov & Liu, Changxin, 2023. "Variation in sprinkler irrigation droplet impact angle on the physical crusting properties of soils," Agricultural Water Management, Elsevier, vol. 289(C).
    2. Zhang, Qianwen & Ge, Maosheng & Wu, Pute & Wei, Fuqiang & Xue, Shaopeng & Wang, Bo & Ge, Xinbo, 2023. "Solar photovoltaic coupled with compressed air energy storage: A novel method for energy saving and high quality sprinkler irrigation," Agricultural Water Management, Elsevier, vol. 288(C).
    3. Robles, O. & Latorre, B. & Zapata, N. & Burguete, J., 2019. "Self-calibrated ballistic model for sprinkler irrigation with a field experiments data base," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    4. Chen, Rui & Li, Hong & Wang, Jian & Song, Zhuoyang, 2023. "Critical factors influencing soil runoff and erosion in sprinkler irrigation: Water application rate and droplet kinetic energy," Agricultural Water Management, Elsevier, vol. 283(C).
    5. Hui, Xin & Zhao, He & Zhang, Haohui & Wang, Wentao & Wang, Jingjing & Yan, Haijun, 2023. "Specific power or droplet shear stress: Which is the primary cause of soil erosion under low-pressure sprinklers?," Agricultural Water Management, Elsevier, vol. 286(C).
    6. Jian Wang & Zhuoyang Song & Rui Chen & Ting Yang & Zuokun Tian, 2022. "Experimental Study on Droplet Characteristics of Rotating Sprinklers with Circular Nozzles and Diffuser," Agriculture, MDPI, vol. 12(7), pages 1-21, July.
    7. M. A. M. Moursy & Kamal I. Wasfy, 2022. "Impact of climatic conditions on irrigation water requirements and hydraulic characteristics of modern irrigation systems," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(10), pages 12079-12096, October.
    8. Maroufpoor, Saman & Shiri, Jalal & Maroufpoor, Eisa, 2019. "Modeling the sprinkler water distribution uniformity by data-driven methods based on effective variables," Agricultural Water Management, Elsevier, vol. 215(C), pages 63-73.
    9. Tiago Teribele & Maria Elizabeth Gemaque Costa & Conceição de Maria Sales da Silva & Lia Martins Pereira & Lucas Pinto Bernar & Douglas Alberto Rocha de Castro & Fernanda Paula da Costa Assunção & Mar, 2023. "Hydrothermal Carbonization of Corn Stover: Structural Evolution of Hydro-Char and Degradation Kinetics," Energies, MDPI, vol. 16(7), pages 1-22, April.
    10. Hui, Xin & Zheng, Yudong & Yan, Haijun, 2021. "Water distributions of low-pressure sprinklers as affected by the maize canopy under a centre pivot irrigation system," Agricultural Water Management, Elsevier, vol. 245(C).
    11. Clara Lisseth Mendoza Martinez & Ekaterina Sermyagina & Esa Vakkilainen, 2021. "Hydrothermal Carbonization of Chemical and Biological Pulp Mill Sludges," Energies, MDPI, vol. 14(18), pages 1-18, September.
    12. Franco-Luesma, Samuel & Álvaro-Fuentes, Jorge & Plaza-Bonilla, Daniel & Arrúe, José Luis & Cantero-Martínez, Carlos & Cavero, José, 2019. "Influence of irrigation time and frequency on greenhouse gas emissions in a solid-set sprinkler-irrigated maize under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 221(C), pages 303-311.
    13. Ge, Maosheng & Wu, Pute & Zhu, Delan & Zhang, Lin, 2018. "Analysis of kinetic energy distribution of big gun sprinkler applied to continuous moving hose-drawn traveler," Agricultural Water Management, Elsevier, vol. 201(C), pages 118-132.
    14. Xian Liu & Yueyue Xu & Shikun Sun & Xining Zhao & Yubao Wang, 2022. "Analysis of the Coupling Characteristics of Water Resources and Food Security: The Case of Northwest China," Agriculture, MDPI, vol. 12(8), pages 1-19, July.
    15. Santos, E.C.O. & Guedes, E.F. & Zebende, G.F. & da Silva Filho, A.M., 2022. "Autocorrelation of wind speed: A sliding window approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    16. López-Mata, E. & Tarjuelo, J.M. & Orengo-Valverde, J.J. & Pardo, J.J. & Domínguez, A., 2019. "Irrigation scheduling to maximize crop gross margin under limited water availability," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    17. Fernández, J.E. & Alcon, F. & Diaz-Espejo, A. & Hernandez-Santana, V. & Cuevas, M.V., 2020. "Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard," Agricultural Water Management, Elsevier, vol. 237(C).
    18. Liang, Wang & Wang, Guangwei & Jiao, Kexin & Ning, Xiaojun & Zhang, Jianliang & Guo, Xingmin & Li, Jinhua & Wang, Chuan, 2021. "Conversion mechanism and gasification kinetics of biomass char during hydrothermal carbonization," Renewable Energy, Elsevier, vol. 173(C), pages 318-328.
    19. Zhongwei Liang & Tao Zou & Yupeng Zhang & Jinrui Xiao & Xiaochu Liu, 2022. "Sprinkler Drip Infiltration Quality Prediction for Moisture Space Distribution Using RSAE-NPSO," Agriculture, MDPI, vol. 12(5), pages 1-32, May.
    20. Zhu, Zhongrui & Li, Jiusheng & Zhu, Delan, 2024. "Influence of biotic and abiotic factors and water partitioning on the kinetic energy of sprinkler irrigation on a maize canopy," Agricultural Water Management, Elsevier, vol. 293(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:18:p:7574-:d:413493. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.