IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v24y2022i10d10.1007_s10668-021-01934-8.html
   My bibliography  Save this article

Impact of climatic conditions on irrigation water requirements and hydraulic characteristics of modern irrigation systems

Author

Listed:
  • M. A. M. Moursy

    (National Water Research Center)

  • Kamal I. Wasfy

    (Zagazig University
    Heliopolis University for Sustainable Development)

Abstract

Irrigation system performance regards as a function of climatic conditions. The present study was carried out to study this phenomenon. Sugar beet and sesame corps were cultivated during two agricultural seasons of 2017/2018 and 2018/2019 irrigated with drip and sprinkler systems. The drip and sprinkler systems performance was evaluated in terms of hydraulic characteristics added to irrigation water requirements. The recorded monthly values were compared to the traditional estimation method. The results revealed that irrigation system efficiency was increased by increasing ambient temperature for the drip irrigation system, and vice versa was noticed with the sprinkler irrigation system. Emission uniformity and application efficiency of emitters were increased by increasing ambient temperature. While the sprinkler flow rate and distribution uniformity were decreased by increasing ambient temperature. For drip irrigation system, the average total amount of irrigation water requirements using traditional estimation for sugar beet (2372 m3/fed) was less than the actual calculated (2439 m3/fed), while for sesame crop, the traditional estimation method (2556 m3/fed) was higher than actual calculated (2477 m3/fed). Using a sprinkler system, the average total amount of irrigation water requirements by the traditional estimation (2689 and 2897 m3/fed) was less than the actual calculated (2709 and 3044 m3/fed) for sugar beet and sesame crops, respectively. So, it is important to consider the effects of climatic conditions through the agricultural season.

Suggested Citation

  • M. A. M. Moursy & Kamal I. Wasfy, 2022. "Impact of climatic conditions on irrigation water requirements and hydraulic characteristics of modern irrigation systems," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(10), pages 12079-12096, October.
  • Handle: RePEc:spr:endesu:v:24:y:2022:i:10:d:10.1007_s10668-021-01934-8
    DOI: 10.1007/s10668-021-01934-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-021-01934-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-021-01934-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sheikhesmaeili, Omid & Montero, Jesús & Laserna, Santiago, 2016. "Analysis of water application with semi-portable big size sprinkler irrigation systems in semi-arid areas," Agricultural Water Management, Elsevier, vol. 163(C), pages 275-284.
    2. Robles, O. & Playán, E. & Cavero, J. & Zapata, N., 2017. "Assessing low-pressure solid-set sprinkler irrigation in maize," Agricultural Water Management, Elsevier, vol. 191(C), pages 37-49.
    3. Worqlul, A. W. & Dile, Y. T. & Jeong, J. & Adimassu, Zenebe & Lefore, Nicole & Gerik, T. & Srinivasan, R. & Clarke, N., 2019. "Effect of climate change on land suitability for surface irrigation and irrigation potential of the shallow groundwater in Ghana," Papers published in Journals (Open Access), International Water Management Institute, pages 157:110-157.
    4. Playan, Enrique & Mateos, Luciano, 2006. "Modernization and optimization of irrigation systems to increase water productivity," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 100-116, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Franco-Luesma, Samuel & Álvaro-Fuentes, Jorge & Plaza-Bonilla, Daniel & Arrúe, José Luis & Cantero-Martínez, Carlos & Cavero, José, 2019. "Influence of irrigation time and frequency on greenhouse gas emissions in a solid-set sprinkler-irrigated maize under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 221(C), pages 303-311.
    2. Pan Tang & Chao Chen & Hong Li, 2020. "Improving Water Distribution Uniformity by Optimizing the Structural Size of the Drive Spoon Blades for a Vertical Impact Sprinkler," Sustainability, MDPI, vol. 12(18), pages 1-13, September.
    3. Maroufpoor, Saman & Shiri, Jalal & Maroufpoor, Eisa, 2019. "Modeling the sprinkler water distribution uniformity by data-driven methods based on effective variables," Agricultural Water Management, Elsevier, vol. 215(C), pages 63-73.
    4. Ren, Dongyang & Xu, Xu & Engel, Bernard & Huang, Quanzhong & Xiong, Yunwu & Huo, Zailin & Huang, Guanhua, 2021. "A comprehensive analysis of water productivity in natural vegetation and various crops coexistent agro-ecosystems," Agricultural Water Management, Elsevier, vol. 243(C).
    5. Tapsuwan, Sorada & Peña-Arancibia, Jorge L. & Lazarow, Neil & Albisetti, Melisa & Zheng, Hongxing & Rojas, Rodrigo & Torres-Alferez, Vianney & Chiew, Francis H.S. & Hopkins, Richard & Penton, David J., 2022. "A benefit cost analysis of strategic and operational management options for water management in hyper-arid southern Peru," Agricultural Water Management, Elsevier, vol. 265(C).
    6. Ehsan Qasemipour & Ali Abbasi & Farhad Tarahomi, 2020. "Water-Saving Scenarios Based on Input–Output Analysis and Virtual Water Concept: A Case in Iran," Sustainability, MDPI, vol. 12(3), pages 1-16, January.
    7. T. Fowe & I. Nouiri & B. Ibrahim & H. Karambiri & J. Paturel, 2015. "OPTIWAM: An Intelligent Tool for Optimizing Irrigation Water Management in Coupled Reservoir–Groundwater Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3841-3861, August.
    8. Lankford, B. & Makin, Ian & Matthews, N. & McCornick, Peter G. & Noble, A. & Shah, Tushaar, "undated". "A compact to revitalise large-scale irrigation systems using a leadership-partnership-ownership 'Theory of Change'," Papers published in Journals (Open Access) H047459, International Water Management Institute.
    9. Jackson, T.M. & Hanjra, Munir A. & Khan, S. & Hafeez, M.M., 2011. "Building a climate resilient farm: A risk based approach for understanding water, energy and emissions in irrigated agriculture," Agricultural Systems, Elsevier, vol. 104(9), pages 729-745.
    10. Li, Xiaolin & Tong, Ling & Niu, Jun & Kang, Shaozhong & Du, Taisheng & Li, Sien & Ding, Risheng, 2017. "Spatio-temporal distribution of irrigation water productivity and its driving factors for cereal crops in Hexi Corridor, Northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 55-63.
    11. Kundu, M. & Sarkar, S., 2009. "Growth and evapotranspiration pattern of rajmash (Phaseolus vulgaris L.) under varying irrigation schedules and phosphate levels in a hot sub-humid climate," Agricultural Water Management, Elsevier, vol. 96(8), pages 1268-1274, August.
    12. Chen, Dan & Webber, Michael & Chen, Jing & Luo, Zhaohui, 2011. "Emergy evaluation perspectives of an irrigation improvement project proposal in China," Ecological Economics, Elsevier, vol. 70(11), pages 2154-2162, September.
    13. Imran Ali Lakhiar & Haofang Yan & Chuan Zhang & Guoqing Wang & Bin He & Beibei Hao & Yujing Han & Biyu Wang & Rongxuan Bao & Tabinda Naz Syed & Junaid Nawaz Chauhdary & Md. Rakibuzzaman, 2024. "A Review of Precision Irrigation Water-Saving Technology under Changing Climate for Enhancing Water Use Efficiency, Crop Yield, and Environmental Footprints," Agriculture, MDPI, vol. 14(7), pages 1-40, July.
    14. Ghahroodi, E. Mokari & Noory, H. & Liaghat, A.M., 2015. "Performance evaluation study and hydrologic and productive analysis of irrigation systems at the Qazvin irrigation network (Iran)," Agricultural Water Management, Elsevier, vol. 148(C), pages 189-195.
    15. Ramesh Srivastava & Sheelabhadra Mohanty & Ramlal Singandhuppe & Rajiv Mohanty & Madhu Behera & Lala Ray & Deepika Sahoo, 2010. "Feasibility Evaluation of Pressurized Irrigation in Canal Commands," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(12), pages 3017-3032, September.
    16. Cai, Ximing & Yang, Yi-Chen E. & Ringler, Claudia & Zhao, Jianshi & You, Liangzhi, 2011. "Agricultural water productivity assessment for the Yellow River Basin," Agricultural Water Management, Elsevier, vol. 98(8), pages 1297-1306, May.
    17. Jackson, Tamara M. & Khan, Shahbaz & Hafeez, Mohsin, 2010. "A comparative analysis of water application and energy consumption at the irrigated field level," Agricultural Water Management, Elsevier, vol. 97(10), pages 1477-1485, October.
    18. Jiménez-Aguirre, M.T. & Isidoro, D., 2018. "Hydrosaline Balance in and Nitrogen Loads from an irrigation district before and after modernization," Agricultural Water Management, Elsevier, vol. 208(C), pages 163-175.
    19. Hang Xu & Rui Yang & Jianfeng Song, 2021. "Agricultural Water Use Efficiency and Rebound Effect: A Study for China," IJERPH, MDPI, vol. 18(13), pages 1-16, July.
    20. Mondol, Md Anarul Haque & Zhu, Xuan & Dunkerley, David & Henley, Benjamin J., 2022. "Changing occurrence of crop water surplus or deficit and the impact of irrigation: An analysis highlighting consequences for rice production in Bangladesh," Agricultural Water Management, Elsevier, vol. 269(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:24:y:2022:i:10:d:10.1007_s10668-021-01934-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.