Author
Listed:
- Boninsenha, Ígor
- Mantovani, Everardo C.
- Rudnick, Daran R.
- Ribeiro, Higor de Q.
Abstract
This study investigates the use of satellite-derived Christiansen Uniformity Coefficient (SDCUC) values for evaluating irrigation uniformity. In the context of global water scarcity and the imperative for sustainable water management, we explore the potential of remote sensing methods to evaluate irrigation uniformity across large agricultural areas. The findings reveal a consistent tendency for SDCUC to overestimate irrigation uniformity, with an average overestimation rate of 7.83 %. However, accuracy improved with the appropriate method, vegetation index, or spectral band selection. Employing the entire satellite image for SDCUC (SDCUCTOT) assessment improved accuracy. For Sentinel-1 (S1), using the dual-band cross-polarization horizontal transmit/vertical receive band (VH), the bias confidence interval was −0.39–0.69 %, while for Sentinel-2 (S2), using the normalized difference red edge 3 index (NDRE3), it was −1.47–0.66 %, and for Landsat 8 (L8) and Landsat 9 (L9) using the shortwave infrared water stress index (SIWSI) it ranged from 0.36 % to 2.28 %. Improved results were also observed when the normalized difference vegetation index (NDVI) ranged between 0.4 and 0.8 or the evapotranspiration and potential evapotranspiration ratio (ET/PET) ranged between 0.30 and 0.55. In these conditions, SDCUCTOT for the S2, L8, and L9 using the simple ratio index (SR) ranged from 1.00 % to 2.33 %, 0.00–1.83 %, 0.23–2.00 %, respectively, and for S2, the normalized difference water index (NDWI) and NDRE3 ranged from −1.39–0.71 %, and −1.43–2.31 % respectively. These findings underscore the potential of remote sensing techniques to revolutionize water resource management and promote sustainable agriculture, emphasizing the synergistic role of ground-based measurements and the need for continued methodological refinements to improve accuracy. Further advancements and research are warranted to refine the methodology and enhance the accuracy and reliability of remote sensing-based irrigation uniformity assessment, ultimately contributing to more sustainable agricultural irrigation practices.
Suggested Citation
Boninsenha, Ígor & Mantovani, Everardo C. & Rudnick, Daran R. & Ribeiro, Higor de Q., 2024.
"Revealing irrigation uniformity with remote sensing: A comparative analysis of satellite-derived uniformity coefficient,"
Agricultural Water Management, Elsevier, vol. 301(C).
Handle:
RePEc:eee:agiwat:v:301:y:2024:i:c:s0378377424002798
DOI: 10.1016/j.agwat.2024.108944
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:301:y:2024:i:c:s0378377424002798. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.