IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i12p5047-d374192.html
   My bibliography  Save this article

Managing Fuel Consumption and Emissions in the Renewed Fleet of a Transport Company

Author

Listed:
  • Jasmina Pašagić Škrinjar

    (Faculty of Transport and Traffic Sciences, University of Zagreb, 10000 Zagreb, Croatia)

  • Borna Abramović

    (Faculty of Transport and Traffic Sciences, University of Zagreb, 10000 Zagreb, Croatia)

  • Lucija Bukvić

    (Faculty of Transport and Traffic Sciences, University of Zagreb, 10000 Zagreb, Croatia)

  • Željko Marušić

    (Faculty of Transport and Traffic Sciences, University of Zagreb, 10000 Zagreb, Croatia)

Abstract

This research shows the relationship between the energy emission parameters and CO 2 equivalents for conventional fossil fuel-powered vehicles (ICEV, Internal Combustion Engine Vehicles) and hybrid electric vehicles (HEV) to determine the life cycle costs of the vehicles. The combination of transport policy and alternative fuels has the purpose of creating a sustainable transport system. Transport policy focuses on increasing energy efficiency and reducing the price of electric vehicles as technology advances. The profitability for each vehicle type was also observed through current vehicle purchase prices. The main objective of this paper is to study the environmental impact of diesel vans, taking into account lifelong energy use, fuel consumption and CO 2 equivalents through air pollution. Although the purchase price of the ICEV is less than the HEV, all electric vehicles are determined to have the lowest overall environmental impact during the operational phase. The goal of transport companies and logistics operators that own a fleet is to achieve quality service with maximum cost and negative environmental impact reduction.

Suggested Citation

  • Jasmina Pašagić Škrinjar & Borna Abramović & Lucija Bukvić & Željko Marušić, 2020. "Managing Fuel Consumption and Emissions in the Renewed Fleet of a Transport Company," Sustainability, MDPI, vol. 12(12), pages 1-15, June.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:12:p:5047-:d:374192
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/12/5047/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/12/5047/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ruzzenenti, F. & Basosi, R., 2009. "Evaluation of the energy efficiency evolution in the European road freight transport sector," Energy Policy, Elsevier, vol. 37(10), pages 4079-4085, October.
    2. Nils Hooftman & Luis Oliveira & Maarten Messagie & Thierry Coosemans & Joeri Van Mierlo, 2016. "Environmental Analysis of Petrol, Diesel and Electric Passenger Cars in a Belgian Urban Setting," Energies, MDPI, vol. 9(2), pages 1-24, January.
    3. Ke, Wenwei & Zhang, Shaojun & He, Xiaoyi & Wu, Ye & Hao, Jiming, 2017. "Well-to-wheels energy consumption and emissions of electric vehicles: Mid-term implications from real-world features and air pollution control progress," Applied Energy, Elsevier, vol. 188(C), pages 367-377.
    4. Wang, Qian & Jiang, Bin & Li, Bo & Yan, Yuying, 2016. "A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 106-128.
    5. Aleksandar Lozanovski & Nicole Whitehouse & Nathanael Ko & Simon Whitehouse, 2018. "Sustainability Assessment of Fuel Cell Buses in Public Transport," Sustainability, MDPI, vol. 10(5), pages 1-15, May.
    6. Orhan Topal & İsmail Nakir, 2018. "Total Cost of Ownership Based Economic Analysis of Diesel, CNG and Electric Bus Concepts for the Public Transport in Istanbul City," Energies, MDPI, vol. 11(9), pages 1-17, September.
    7. Cedric De Cauwer & Joeri Van Mierlo & Thierry Coosemans, 2015. "Energy Consumption Prediction for Electric Vehicles Based on Real-World Data," Energies, MDPI, vol. 8(8), pages 1-21, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leo Tišljarić & Tonči Carić & Borna Abramović & Tomislav Fratrović, 2020. "Traffic State Estimation and Classification on Citywide Scale Using Speed Transition Matrices," Sustainability, MDPI, vol. 12(18), pages 1-16, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karol Tucki & Olga Orynycz & Antoni Świć & Mateusz Mitoraj-Wojtanek, 2019. "The Development of Electromobility in Poland and EU States as a Tool for Management of CO 2 Emissions," Energies, MDPI, vol. 12(15), pages 1-22, July.
    2. Ilya Kulikov & Andrey Kozlov & Alexey Terenchenko & Kirill Karpukhin, 2020. "Comparative Study of Powertrain Hybridization for Heavy-Duty Vehicles Equipped with Diesel and Gas Engines," Energies, MDPI, vol. 13(8), pages 1-23, April.
    3. Marc Wentker & Matthew Greenwood & Jens Leker, 2019. "A Bottom-Up Approach to Lithium-Ion Battery Cost Modeling with a Focus on Cathode Active Materials," Energies, MDPI, vol. 12(3), pages 1-18, February.
    4. Mohammed, Abubakar Gambo & Elfeky, Karem Elsayed & Wang, Qiuwang, 2022. "Recent advancement and enhanced battery performance using phase change materials based hybrid battery thermal management for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    5. Majumder, Suman & De, Krishnarti & Kumar, Praveen & Sengupta, Bodhisattva & Biswas, Pabitra Kumar, 2021. "Techno-commercial analysis of sustainable E-bus-based public transit systems: An Indian case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    6. Fenling Feng & Qingya Zhang, 2015. "Multimodal Transport System Coevolution Model Based on Synergetic Theory," Discrete Dynamics in Nature and Society, Hindawi, vol. 2015, pages 1-10, March.
    7. Audoly, Richard & Vogt-Schilb, Adrien & Guivarch, Céline & Pfeiffer, Alexander, 2018. "Pathways toward zero-carbon electricity required for climate stabilization," Applied Energy, Elsevier, vol. 225(C), pages 884-901.
    8. Stephany Isabel Vallarta-Serrano & Ana Bricia Galindo-Muro & Riccardo Cespi & Rogelio Bustamante-Bello, 2023. "Analysis of GHG Emission from Cargo Vehicles in Megacities: The Case of the Metropolitan Zone of the Valley of Mexico," Energies, MDPI, vol. 16(13), pages 1-19, June.
    9. Sofia Dahlgren & Jonas Ammenberg, 2021. "Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(3), pages 1-30, January.
    10. Katsaprakakis, Dimitris Al & Voumvoulakis, Manolis, 2018. "A hybrid power plant towards 100% energy autonomy for the island of Sifnos, Greece. Perspectives created from energy cooperatives," Energy, Elsevier, vol. 161(C), pages 680-698.
    11. István Árpád & Judit T. Kiss & Gábor Bellér & Dénes Kocsis, 2021. "Sustainability Investigation of Vehicles’ CO 2 Emission in Hungary," Sustainability, MDPI, vol. 13(15), pages 1-15, July.
    12. Liu, Yajie & Dong, Feng & Wang, Yulong & Li, Jingyun & Qin, Chang, 2023. "Assessment of the energy-saving and environment effects of China's gasoline vehicle withdrawal under the impact of geopolitical risks," Resources Policy, Elsevier, vol. 86(PB).
    13. Hu, Dingding & Zhou, Kaile & Li, Fangyi & Ma, Dawei, 2022. "Electric vehicle user classification and value discovery based on charging big data," Energy, Elsevier, vol. 249(C).
    14. Raka Jovanovic & Islam Safak Bayram & Sertac Bayhan & Stefan Voß, 2021. "A GRASP Approach for Solving Large-Scale Electric Bus Scheduling Problems," Energies, MDPI, vol. 14(20), pages 1-23, October.
    15. Pérez-Martínez, P.J. & Vassallo-Magro, J.M., 2013. "Changes in the external costs of freight surface transport In Spain," Research in Transportation Economics, Elsevier, vol. 42(1), pages 61-76.
    16. Hu, Xiaosong & Feng, Fei & Liu, Kailong & Zhang, Lei & Xie, Jiale & Liu, Bo, 2019. "State estimation for advanced battery management: Key challenges and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    17. Wang, Hua & Zhao, De & Meng, Qiang & Ong, Ghim Ping & Lee, Der-Horng, 2020. "Network-level energy consumption estimation for electric vehicles considering vehicle and user heterogeneity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 30-46.
    18. Jarosław Ziółkowski & Mateusz Oszczypała & Jerzy Małachowski & Joanna Szkutnik-Rogoż, 2021. "Use of Artificial Neural Networks to Predict Fuel Consumption on the Basis of Technical Parameters of Vehicles," Energies, MDPI, vol. 14(9), pages 1-23, May.
    19. Wang, Mengmeng & Liu, Kang & Dutta, Shanta & Alessi, Daniel S. & Rinklebe, Jörg & Ok, Yong Sik & Tsang, Daniel C.W., 2022. "Recycling of lithium iron phosphate batteries: Status, technologies, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    20. Michel Noussan & Pier Paolo Raimondi & Rossana Scita & Manfred Hafner, 2020. "The Role of Green and Blue Hydrogen in the Energy Transition—A Technological and Geopolitical Perspective," Sustainability, MDPI, vol. 13(1), pages 1-26, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:12:p:5047-:d:374192. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.