IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i8p8573-8593d54101.html
   My bibliography  Save this article

Energy Consumption Prediction for Electric Vehicles Based on Real-World Data

Author

Listed:
  • Cedric De Cauwer

    (Electrotechnical Engineering and Energy Technology, MOBI Research Group, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium)

  • Joeri Van Mierlo

    (Electrotechnical Engineering and Energy Technology, MOBI Research Group, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
    These authors contributed equally to this work.)

  • Thierry Coosemans

    (Electrotechnical Engineering and Energy Technology, MOBI Research Group, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
    These authors contributed equally to this work.)

Abstract

Electric vehicle (EV) energy consumption is variable and dependent on a number of external factors such as road topology, traffic, driving style, ambient temperature, etc. The goal of this paper is to detect and quantify correlations between the kinematic parameters of the vehicle and its energy consumption. Real-world data of EV energy consumption are used to construct the energy consumption calculation models. Based on the vehicle dynamics equation as underlying physical model, multiple linear regression is used to construct three models. Each model uses a different level of aggregation of the input parameters, allowing predictions using different types of available input parameters. One model uses aggregated values of the kinematic parameters of trips. This model allows prediction with basic, easily available input parameters such as travel distance, travel time, and temperature. The second model extends this by including detailed acceleration data. The third model uses the raw data of the kinematic parameters as input parameters to predict the energy consumption. Using detailed values of kinematic parameters for the prediction in theory increases the link between the statistical model and its underlying physical principles, but requires these parameters to be available as input in order to make predictions. The first two models show similar results. The third model shows a worse fit than the first two, but has a similar accuracy. This model has great potential for future improvement.

Suggested Citation

  • Cedric De Cauwer & Joeri Van Mierlo & Thierry Coosemans, 2015. "Energy Consumption Prediction for Electric Vehicles Based on Real-World Data," Energies, MDPI, vol. 8(8), pages 1-21, August.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:8:p:8573-8593:d:54101
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/8/8573/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/8/8573/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maarten Messagie & Kenneth Lebeau & Thierry Coosemans & Cathy Macharis & Joeri Van Mierlo, 2013. "Environmental and Financial Evaluation of Passenger Vehicle Technologies in Belgium," Sustainability, MDPI, vol. 5(12), pages 1-14, November.
    2. Maarten Messagie & Faycal-Siddikou Boureima & Thierry Coosemans & Cathy Macharis & Joeri Van Mierlo, 2014. "A Range-Based Vehicle Life Cycle Assessment Incorporating Variability in the Environmental Assessment of Different Vehicle Technologies and Fuels," Energies, MDPI, vol. 7(3), pages 1-16, March.
    3. Wager, Guido & McHenry, Mark P. & Whale, Jonathan & Bräunl, Thomas, 2014. "Testing energy efficiency and driving range of electric vehicles in relation to gear selection," Renewable Energy, Elsevier, vol. 62(C), pages 303-312.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bauer, Christian & Hofer, Johannes & Althaus, Hans-Jörg & Del Duce, Andrea & Simons, Andrew, 2015. "The environmental performance of current and future passenger vehicles: Life cycle assessment based on a novel scenario analysis framework," Applied Energy, Elsevier, vol. 157(C), pages 871-883.
    2. Javier Sanfélix & Cristina De la Rúa & Jannick Hoejrup Schmidt & Maarten Messagie & Joeri Van Mierlo, 2016. "Environmental and Economic Performance of an Li-Ion Battery Pack: A Multiregional Input-Output Approach," Energies, MDPI, vol. 9(8), pages 1-15, July.
    3. Cai, Yanpeng & Applegate, Scott & Yue, Wencong & Cai, Jianying & Wang, Xuan & Liu, Gengyuan & Li, Chunhui, 2017. "A hybrid life cycle and multi-criteria decision analysis approach for identifying sustainable development strategies of Beijing's taxi fleet," Energy Policy, Elsevier, vol. 100(C), pages 314-325.
    4. Chun Yang & Jui-Che Tu & Qianling Jiang, 2020. "The Influential Factors of Consumers’ Sustainable Consumption: A Case on Electric Vehicles in China," Sustainability, MDPI, vol. 12(8), pages 1-16, April.
    5. Marmiroli, Benedetta & Venditti, Mattia & Dotelli, Giovanni & Spessa, Ezio, 2020. "The transport of goods in the urban environment: A comparative life cycle assessment of electric, compressed natural gas and diesel light-duty vehicles," Applied Energy, Elsevier, vol. 260(C).
    6. Anca N. Iuga (Butnariu) & Vasile N. Popa & Luminița I. Popa, 2018. "Comparative Analysis of Automotive Products Regarding the Influence of Eco-Friendly Methods to Emissions’ Reduction," Energies, MDPI, vol. 12(1), pages 1-24, December.
    7. Hasan-Basri, Bakti & Mohd Mustafa, Muzafarshah & Bakar, Normizan, 2019. "Are Malaysian Consumers Willing to Pay for Hybrid Cars’ Attributes?," Jurnal Ekonomi Malaysia, Faculty of Economics and Business, Universiti Kebangsaan Malaysia, vol. 53(1), pages 121-134.
    8. Cox, Brian & Bauer, Christian & Mendoza Beltran, Angelica & van Vuuren, Detlef P. & Mutel, Christopher L., 2020. "Life cycle environmental and cost comparison of current and future passenger cars under different energy scenarios," Applied Energy, Elsevier, vol. 269(C).
    9. Felipe Cerdas & Paul Titscher & Nicolas Bognar & Richard Schmuch & Martin Winter & Arno Kwade & Christoph Herrmann, 2018. "Exploring the Effect of Increased Energy Density on the Environmental Impacts of Traction Batteries: A Comparison of Energy Optimized Lithium-Ion and Lithium-Sulfur Batteries for Mobility Applications," Energies, MDPI, vol. 11(1), pages 1-20, January.
    10. Mayank Jha & Frede Blaabjerg & Mohammed Ali Khan & Varaha Satya Bharath Kurukuru & Ahteshamul Haque, 2019. "Intelligent Control of Converter for Electric Vehicles Charging Station," Energies, MDPI, vol. 12(12), pages 1-25, June.
    11. Xin Sun & Vanessa Bach & Matthias Finkbeiner & Jianxin Yang, 2021. "Criticality Assessment of the Life Cycle of Passenger Vehicles Produced in China," Circular Economy and Sustainability, Springer, vol. 1(1), pages 435-455, June.
    12. Siqin Xiong & Junping Ji & Xiaoming Ma, 2019. "Comparative Life Cycle Energy and GHG Emission Analysis for BEVs and PhEVs: A Case Study in China," Energies, MDPI, vol. 12(5), pages 1-17, March.
    13. Danielis, Romeo & Giansoldati, Marco & Scorrano, Mariangela, 2019. "Comparing the life-cycle CO2 emissions of the best-selling electric and internal combustion engine cars in Italy," Working Papers 19_1, SIET Società Italiana di Economia dei Trasporti e della Logistica.
    14. David Borge-Diez & Pedro Miguel Ortega-Cabezas & Antonio Colmenar-Santos & Jorge Juan Blanes-Peiró, 2021. "Contribution of Driving Efficiency to Vehicle-to-Building," Energies, MDPI, vol. 14(12), pages 1-30, June.
    15. Eckard Helmers & Johannes Dietz & Martin Weiss, 2020. "Sensitivity Analysis in the Life-Cycle Assessment of Electric vs. Combustion Engine Cars under Approximate Real-World Conditions," Sustainability, MDPI, vol. 12(3), pages 1-31, February.
    16. Lei Zhang & Zhenpo Wang & Fengchun Sun & David G. Dorrell, 2014. "Online Parameter Identification of Ultracapacitor Models Using the Extended Kalman Filter," Energies, MDPI, vol. 7(5), pages 1-14, May.
    17. Tomáš Formánek & Radek Tahal, 2020. "Socio-Demographic Aspects Affecting Individual Stances towards Electric and Hybrid Vehicles in the Czech Republic," Central European Business Review, Prague University of Economics and Business, vol. 2020(2), pages 78-93.
    18. Cedric De Cauwer & Wouter Verbeke & Thierry Coosemans & Saphir Faid & Joeri Van Mierlo, 2017. "A Data-Driven Method for Energy Consumption Prediction and Energy-Efficient Routing of Electric Vehicles in Real-World Conditions," Energies, MDPI, vol. 10(5), pages 1-18, May.
    19. Hooftman, Nils & Messagie, Maarten & Van Mierlo, Joeri & Coosemans, Thierry, 2018. "A review of the European passenger car regulations – Real driving emissions vs local air quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 86(C), pages 1-21.
    20. Wojciech Cieslik & Filip Szwajca & Wojciech Golimowski & Andrew Berger, 2021. "Experimental Analysis of Residential Photovoltaic (PV) and Electric Vehicle (EV) Systems in Terms of Annual Energy Utilization," Energies, MDPI, vol. 14(4), pages 1-21, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:8:p:8573-8593:d:54101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.