IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i8p2072-d348367.html
   My bibliography  Save this article

Comparative Study of Powertrain Hybridization for Heavy-Duty Vehicles Equipped with Diesel and Gas Engines

Author

Listed:
  • Ilya Kulikov

    (National Research Center “NAMI”, 125438 Moscow, Russia)

  • Andrey Kozlov

    (National Research Center “NAMI”, 125438 Moscow, Russia)

  • Alexey Terenchenko

    (National Research Center “NAMI”, 125438 Moscow, Russia)

  • Kirill Karpukhin

    (National Research Center “NAMI”, 125438 Moscow, Russia)

Abstract

This article describes a study that aimed to estimate the fuel-saving potential possessed by the hybridization of conventional powertrains intended for heavy-duty vehicles based on diesel and natural gas fueled engines. The tools used for this analysis constitute mathematical models of vehicle dynamics and the powertrain, including its components, i.e., the engine, electric drive, transmission, and energy storage system (ESS). The model of the latter, accompanied by experimental data, allowed for an analysis of employing a supercapacitor regarding the selection of its energy content and the interface between the traction electric drive and the ESS (in light of the wide voltage operating range of supercapacitors). The results revealed the influence of these factors on both the supercapacitor efficiency (during its operation within a powertrain) and the vehicle fuel economy. After implementation of the optimized ESS design within the experimentally validated vehicle model, simulations were conducted in several driving cycles. The results allowed us to compare the fuel economy provided by the hybridization for diesel and gas powertrains in different driving conditions, with different vehicle masses, taking into account the onboard auxiliary power consumption.

Suggested Citation

  • Ilya Kulikov & Andrey Kozlov & Alexey Terenchenko & Kirill Karpukhin, 2020. "Comparative Study of Powertrain Hybridization for Heavy-Duty Vehicles Equipped with Diesel and Gas Engines," Energies, MDPI, vol. 13(8), pages 1-23, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:2072-:d:348367
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/8/2072/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/8/2072/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wei Wu & Julius Partridge & Richard Bucknall, 2019. "Development and Evaluation of a Degree of Hybridisation Identification Strategy for a Fuel Cell Supercapacitor Hybrid Bus," Energies, MDPI, vol. 12(1), pages 1-18, January.
    2. Wang, Qian & Jiang, Bin & Li, Bo & Yan, Yuying, 2016. "A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 106-128.
    3. Orhan Topal & İsmail Nakir, 2018. "Total Cost of Ownership Based Economic Analysis of Diesel, CNG and Electric Bus Concepts for the Public Transport in Istanbul City," Energies, MDPI, vol. 11(9), pages 1-17, September.
    4. Bo Long & Shin Teak Lim & Zhi Feng Bai & Ji Hyoung Ryu & Kil To Chong, 2014. "Energy Management and Control of Electric Vehicles, Using Hybrid Power Source in Regenerative Braking Operation," Energies, MDPI, vol. 7(7), pages 1-16, July.
    5. Cong Zhang & Dai Wang & Bin Wang & Fan Tong, 2020. "Battery Degradation Minimization-Oriented Hybrid Energy Storage System for Electric Vehicles," Energies, MDPI, vol. 13(1), pages 1-21, January.
    6. Samuel Rodman Oprešnik & Tine Seljak & Rok Vihar & Marko Gerbec & Tomaž Katrašnik, 2018. "Real-World Fuel Consumption, Fuel Cost and Exhaust Emissions of Different Bus Powertrain Technologies," Energies, MDPI, vol. 11(8), pages 1-20, August.
    7. Andrey Kozlov & Vadim Grinev & Alexey Terenchenko & Gennady Kornilov, 2019. "An Investigation of the Effect of Fuel Supply Parameters on Combustion Process of the Heavy-Duty Dual-Fuel Diesel Ignited Gas Engine," Energies, MDPI, vol. 12(12), pages 1-20, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jasmina Pašagić Škrinjar & Borna Abramović & Lucija Bukvić & Željko Marušić, 2020. "Managing Fuel Consumption and Emissions in the Renewed Fleet of a Transport Company," Sustainability, MDPI, vol. 12(12), pages 1-15, June.
    2. Mohammed, Abubakar Gambo & Elfeky, Karem Elsayed & Wang, Qiuwang, 2022. "Recent advancement and enhanced battery performance using phase change materials based hybrid battery thermal management for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    3. Majumder, Suman & De, Krishnarti & Kumar, Praveen & Sengupta, Bodhisattva & Biswas, Pabitra Kumar, 2021. "Techno-commercial analysis of sustainable E-bus-based public transit systems: An Indian case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    4. Sofia Dahlgren & Jonas Ammenberg, 2021. "Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(3), pages 1-30, January.
    5. Raka Jovanovic & Islam Safak Bayram & Sertac Bayhan & Stefan Voß, 2021. "A GRASP Approach for Solving Large-Scale Electric Bus Scheduling Problems," Energies, MDPI, vol. 14(20), pages 1-23, October.
    6. Hu, Xiaosong & Feng, Fei & Liu, Kailong & Zhang, Lei & Xie, Jiale & Liu, Bo, 2019. "State estimation for advanced battery management: Key challenges and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    7. Wang, Mengmeng & Liu, Kang & Dutta, Shanta & Alessi, Daniel S. & Rinklebe, Jörg & Ok, Yong Sik & Tsang, Daniel C.W., 2022. "Recycling of lithium iron phosphate batteries: Status, technologies, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    8. Raul Payri & José M. García-Oliver & Victor Mendoza & Alberto Viera, 2020. "Analysis of the Influence of Diesel Spray Injection on the Ignition and Soot Formation in Multiple Injection Strategy," Energies, MDPI, vol. 13(13), pages 1-22, July.
    9. Huang, Deyang & Chen, Ziqiang & Zhou, Shiyao, 2021. "Model prediction-based battery-powered heating method for series-connected lithium-ion battery pack working at extremely cold temperatures," Energy, Elsevier, vol. 216(C).
    10. Henry Miniguano & Andrés Barrado & Cristina Fernández & Pablo Zumel & Antonio Lázaro, 2019. "A General Parameter Identification Procedure Used for the Comparative Study of Supercapacitors Models," Energies, MDPI, vol. 12(9), pages 1-20, May.
    11. Iván López & Pedro Luis Calvo & Gonzalo Fernández-Sánchez & Carlos Sierra & Roberto Corchero & Cesar Omar Chacón & Carlos de Juan & Daniel Rosas & Francisco Burgos, 2022. "Different Approaches for a Goal: The Electrical Bus-EMT Madrid as a Successful Case Study," Energies, MDPI, vol. 15(17), pages 1-24, August.
    12. Tarhan, Burak & Yetik, Ozge & Karakoc, Tahir Hikmet, 2021. "Hybrid battery management system design for electric aircraft," Energy, Elsevier, vol. 234(C).
    13. Saeed, Ali & Karimi, Nader & Paul, Manosh C., 2021. "Analysis of the unsteady thermal response of a Li-ion battery pack to dynamic loads," Energy, Elsevier, vol. 231(C).
    14. Ramesh Kumar Chidambaram & Dipankar Chatterjee & Barnali Barman & Partha Pratim Das & Dawid Taler & Jan Taler & Tomasz Sobota, 2023. "Effect of Regenerative Braking on Battery Life," Energies, MDPI, vol. 16(14), pages 1-24, July.
    15. Jin, Xianrong & Duan, Xiting & Jiang, Wenjuan & Wang, Yan & Zou, Youlan & Lei, Weixin & Sun, Lizhong & Ma, Zengsheng, 2021. "Structural design of a composite board/heat pipe based on the coupled electro-chemical-thermal model in battery thermal management system," Energy, Elsevier, vol. 216(C).
    16. Hussain, Shahid & Irshad, Reyazur Rashid & Pallonetto, Fabiano & Hussain, Ihtisham & Hussain, Zakir & Tahir, Muhammad & Abimannan, Satheesh & Shukla, Saurabh & Yousif, Adil & Kim, Yun-Su & El-Sayed, H, 2023. "Hybrid coordination scheme based on fuzzy inference mechanism for residential charging of electric vehicles," Applied Energy, Elsevier, vol. 352(C).
    17. Armando Cartenì & Ilaria Henke & Clorinda Molitierno & Luigi Di Francesco, 2020. "Strong Sustainability in Public Transport Policies: An e-Mobility Bus Fleet Application in Sorrento Peninsula (Italy)," Sustainability, MDPI, vol. 12(17), pages 1-19, August.
    18. Khairy Sayed & Hossam A. Gabbar, 2016. "Electric Vehicle to Power Grid Integration Using Three-Phase Three-Level AC/DC Converter and PI-Fuzzy Controller," Energies, MDPI, vol. 9(7), pages 1-16, July.
    19. Lin, Xiang-Wei & Li, Yu-Bai & Wu, Wei-Tao & Zhou, Zhi-Fu & Chen, Bin, 2024. "Advances on two-phase heat transfer for lithium-ion battery thermal management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    20. Hannan, M.A. & Lipu, M.S.H. & Hussain, A. & Mohamed, A., 2017. "A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 834-854.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:2072-:d:348367. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.