IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i14p5386-d1194441.html
   My bibliography  Save this article

Enhancing Energy Power Quality in Low-Voltage Networks Integrating Renewable Energy Generation: A Case Study in a Microgrid Laboratory

Author

Listed:
  • Edisson Villa-Ávila

    (Department of Electrical, Electronics and Telecommunications Engineering (DEET), University of Cuenca, Balzay Campus, Cuenca 010107, Ecuador
    Department of Electrical Engineering, University of Jaén, 23700 Linares, Spain)

  • Paul Arévalo

    (Department of Electrical Engineering, University of Jaén, 23700 Linares, Spain)

  • Roque Aguado

    (Department of Electrical Engineering, University of Jaén, 23700 Linares, Spain)

  • Danny Ochoa-Correa

    (Department of Electrical, Electronics and Telecommunications Engineering (DEET), University of Cuenca, Balzay Campus, Cuenca 010107, Ecuador)

  • Vinicio Iñiguez-Morán

    (Department of Electrical, Electronics and Telecommunications Engineering (DEET), University of Cuenca, Balzay Campus, Cuenca 010107, Ecuador)

  • Francisco Jurado

    (Department of Electrical Engineering, University of Jaén, 23700 Linares, Spain)

  • Marcos Tostado-Véliz

    (Department of Electrical Engineering, University of Jaén, 23700 Linares, Spain)

Abstract

Nowadays, energy decarbonization due to integrating renewable energy sources presents important challenges to overcome. The intermittent nature of photovoltaic systems reduces power quality by producing voltage variations and frequency deviations in electrical system networks, especially in weak and isolated distribution systems in developing countries. This paper presents a power smoothing method for improving the low-pass filter and moving average for grid-connected photovoltaic systems. This novel method includes state-of-charge monitoring control of the supercapacitor’s energy storage system to reduce the fluctuations of photovoltaic power at the point of common coupling. A case study for a microgrid in a high-altitude city in Ecuador is presented with exhaustive laboratory tests using real data. This research aims to improve energy power quality in electrical distribution systems to cope with the growth of renewable penetration. The results demonstrate significant power quality and stability improvements achieved through the proposed method. For instance, the power smoothing method effectively reduced power fluctuations by 16.7% with the low-pass filter, 14.05% with the ramp-rate filter, and 9.7% with the moving average filter.

Suggested Citation

  • Edisson Villa-Ávila & Paul Arévalo & Roque Aguado & Danny Ochoa-Correa & Vinicio Iñiguez-Morán & Francisco Jurado & Marcos Tostado-Véliz, 2023. "Enhancing Energy Power Quality in Low-Voltage Networks Integrating Renewable Energy Generation: A Case Study in a Microgrid Laboratory," Energies, MDPI, vol. 16(14), pages 1-23, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5386-:d:1194441
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/14/5386/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/14/5386/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abdullah Al Shereiqi & Amer Al-Hinai & Mohammed Albadi & Rashid Al-Abri, 2020. "Optimal Sizing of a Hybrid Wind-Photovoltaic-Battery Plant to Mitigate Output Fluctuations in a Grid-Connected System," Energies, MDPI, vol. 13(11), pages 1-21, June.
    2. Luana Pontes & Tatiane Costa & Amanda Souza & Nicolau Dantas & Andrea Vasconcelos & Guilherme Rissi & Roberto Dias & Mohamed A. Mohamed & Pierluigi Siano & Manoel Marinho, 2023. "Operational Data Analysis of a Battery Energy Storage System to Support Wind Energy Generation," Energies, MDPI, vol. 16(3), pages 1-20, February.
    3. Guglielmo D’Amico & Filippo Petroni & Salvatore Vergine, 2022. "Ramp Rate Limitation of Wind Power: An Overview," Energies, MDPI, vol. 15(16), pages 1-15, August.
    4. Wei Ma & Wei Wang & Xuezhi Wu & Ruonan Hu & Fen Tang & Weige Zhang, 2019. "Control Strategy of a Hybrid Energy Storage System to Smooth Photovoltaic Power Fluctuations Considering Photovoltaic Output Power Curtailment," Sustainability, MDPI, vol. 11(5), pages 1-22, March.
    5. Arévalo, Paul & Benavides, Dario & Tostado-Véliz, Marcos & Aguado, José A. & Jurado, Francisco, 2023. "Smart monitoring method for photovoltaic systems and failure control based on power smoothing techniques," Renewable Energy, Elsevier, vol. 205(C), pages 366-383.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jimmy Gallegos & Paul Arévalo & Christian Montaleza & Francisco Jurado, 2024. "Sustainable Electrification—Advances and Challenges in Electrical-Distribution Networks: A Review," Sustainability, MDPI, vol. 16(2), pages 1-33, January.
    2. Grzegorz Hołdyński & Zbigniew Skibko & Andrzej Firlit & Wojciech Walendziuk, 2024. "Analysis of the Impact of a Photovoltaic Farm on Selected Parameters of Power Quality in a Medium-Voltage Power Grid," Energies, MDPI, vol. 17(3), pages 1-17, January.
    3. Abdullah Al-Shereiqi & Amer Al-Hinai & Mohammed Albadi & Rashid Al-Abri, 2021. "Optimal Sizing of Hybrid Wind-Solar Power Systems to Suppress Output Fluctuation," Energies, MDPI, vol. 14(17), pages 1-16, August.
    4. Ana Rita Silva & Ana Estanqueiro, 2022. "From Wind to Hybrid: A Contribution to the Optimal Design of Utility-Scale Hybrid Power Plants," Energies, MDPI, vol. 15(7), pages 1-19, April.
    5. Fan Wu & Jun Wang & Zhang Sun & Tao Wang & Lei Chen & Xiaoyan Han, 2019. "An Optimal Wavelet Packets Basis Method for Cascade Hydro-PV-Pumped Storage Generation Systems to Smooth Photovoltaic Power Fluctuations," Energies, MDPI, vol. 12(24), pages 1-22, December.
    6. Amole, Abraham Olatide & Owosibo, Rachael Abiola & Adewuyi, Oludamilare Bode & Oladipo, Stephen & Imarhiagbe, Nosagiagbon Owomano, 2024. "Comparative analysis of control strategies for solar photovoltaic/diesel power system for stand-alone applications," Renewable Energy, Elsevier, vol. 226(C).
    7. Ma, Wei & Wang, Wei & Chen, Zhe & Wu, Xuezhi & Hu, Ruonan & Tang, Fen & Zhang, Weige, 2021. "Voltage regulation methods for active distribution networks considering the reactive power optimization of substations," Applied Energy, Elsevier, vol. 284(C).
    8. Wei Li & Ruixin Jin & Xiaoyong Ma & Guozun Zhang, 2023. "Capacity Optimal Allocation Method and Frequency Division Energy Management for Hybrid Energy Storage System Considering Grid-Connected Requirements in Photovoltaic System," Energies, MDPI, vol. 16(10), pages 1-16, May.
    9. Mariana de Morais Cavalcanti & Tatiane Costa & Alex C. Pereira & Eduardo B. Jatobá & José Bione de Melo Filho & Elisabete Barreto & Mohamed A. Mohamed & Adrian Ilinca & Manoel H. N. Marinho, 2023. "Case Studies for Supplying the Alternating Current Auxiliary Systems of Substations with a Voltage Equal to or Higher than 230 kV," Energies, MDPI, vol. 16(14), pages 1-25, July.
    10. Thanh Van Nguyen & Kyeong-Hwa Kim, 2019. "Power Flow Control Strategy and Reliable DC-Link Voltage Restoration for DC Microgrid under Grid Fault Conditions," Sustainability, MDPI, vol. 11(14), pages 1-27, July.
    11. Hugo Gaspar Hernandez-Palma & Jonny Rafael Plaza Alvarado & Jesús Enrique García Guiliany & Guilherme Luiz Dotto & Claudete Gindri Ramos, 2024. "Implications of Machine Learning in the Generation of Renewable Energies in Latin America from a Globalized Vision: A Systematic Review," International Journal of Energy Economics and Policy, Econjournals, vol. 14(2), pages 1-10, March.
    12. Jingya Jiang & Wei Wang & Xuezhi Wu & Fen Tang & Zhengwen Yang & Xiangjun Li, 2021. "Analysis of Harmonic Resonance Characteristics in Grid-Connected LCL Virtual Synchronous Generator," Sustainability, MDPI, vol. 13(8), pages 1-26, April.
    13. Ruonan Hu & Wei Wang & Zhe Chen & Xuezhi Wu & Long Jing & Wei Ma & Guohong Zeng, 2020. "Coordinated Voltage Regulation Methods in Active Distribution Networks with Soft Open Points," Sustainability, MDPI, vol. 12(22), pages 1-18, November.
    14. Pablo L. Tabosa da Silva & Pedro A. Carvalho Rosas & José F. C. Castro & Davidson da Costa Marques & Ronaldo R. B. Aquino & Guilherme F. Rissi & Rafael C. Neto & Douglas C. P. Barbosa, 2023. "Power Smoothing Strategy for Wind Generation Based on Fuzzy Control Strategy with Battery Energy Storage System," Energies, MDPI, vol. 16(16), pages 1-16, August.
    15. Yanpin Li & Huiliang Wang & Zichao Zhang & Huawei Li & Xiaoli Wang & Qifan Zhang & Tong Zhou & Peng Zhang & Fengxiang Chang, 2023. "Optimal Scheduling of the Wind-Photovoltaic-Energy Storage Multi-Energy Complementary System Considering Battery Service Life," Energies, MDPI, vol. 16(13), pages 1-17, June.
    16. Linjun Shi & Fan Yang & Yang Li & Tao Zheng & Feng Wu & Kwang Y. Lee, 2022. "Optimal Configuration of Electrochemical Energy Storage for Renewable Energy Accommodation Based on Operation Strategy of Pumped Storage Hydro," Sustainability, MDPI, vol. 14(15), pages 1-20, August.
    17. Wiktor Olchowik & Marcin Bednarek & Tadeusz Dąbrowski & Adam Rosiński, 2023. "Application of the Energy Efficiency Mathematical Model to Diagnose Photovoltaic Micro-Systems," Energies, MDPI, vol. 16(18), pages 1-24, September.
    18. Cheng Yang & Jun Jia & Ke He & Liang Xue & Chao Jiang & Shuangyu Liu & Bochao Zhao & Ming Wu & Haoyang Cui, 2023. "Comprehensive Analysis and Evaluation of the Operation and Maintenance of Offshore Wind Power Systems: A Survey," Energies, MDPI, vol. 16(14), pages 1-39, July.
    19. Tan, Qiaofeng & Zhang, Ziyi & Wen, Xin & Fang, Guohua & Xu, Shuo & Nie, Zhuang & Wang, Yanling, 2024. "Risk control of hydropower-photovoltaic multi-energy complementary scheduling based on energy storage allocation," Applied Energy, Elsevier, vol. 358(C).
    20. Kameswara Satya Prakash Oruganti & Chockalingam Aravind Vaithilingam & Gowthamraj Rajendran & Ramasamy A, 2019. "Design and Sizing of Mobile Solar Photovoltaic Power Plant to Support Rapid Charging for Electric Vehicles," Energies, MDPI, vol. 12(18), pages 1-22, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5386-:d:1194441. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.