IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i6p465-d72184.html
   My bibliography  Save this article

Scheduling of Electricity Storage for Peak Shaving with Minimal Device Wear

Author

Listed:
  • Thijs Van der Klauw

    (Department of EEMCS, Univeristy of Twente, Drienerlolaan 5, 7522NB Enschede, The Netherlands)

  • Johann L. Hurink

    (Department of EEMCS, Univeristy of Twente, Drienerlolaan 5, 7522NB Enschede, The Netherlands)

  • Gerard J. M. Smit

    (Department of EEMCS, Univeristy of Twente, Drienerlolaan 5, 7522NB Enschede, The Netherlands)

Abstract

In this work, we investigate scheduling problems for electrical energy storage systems and formulate an algorithm that finds an optimal solution with minimal charging cycles in the case of a single device. For the considered problems, the storage system is used to reduce the peaks of the production and consumption within (part of) the electricity distribution grid, while minimizing device wear. The presented mathematical model of the storage systems captures the general characteristic of electrical energy storage devices while omitting the details of the specific technology used to store the energy. In this way, the model can be applied to a wide range of settings. Within the model, the wear of the storage devices is modeled by either: (1) the total energy throughput; or (2) the number of switches between charging and discharging, the so-called charging cycles. For the first case, where the energy throughput determines the device wear, a linear programming formulation is given. For the case where charging cycles are considered, an NP-hardness proof is given for instances with multiple storage devices. Furthermore, several observations about the structure of the problem are given when considering a single device. Using these observations, we develop a polynomial time algorithm of low complexity that determines an optimal solution. Furthermore, the solutions produced by this algorithm also minimize the throughput, next to the charging cycles, of the device. Due to the low complexity, the algorithm can be applied in various decentralized smart grid applications within future electricity distribution grids.

Suggested Citation

  • Thijs Van der Klauw & Johann L. Hurink & Gerard J. M. Smit, 2016. "Scheduling of Electricity Storage for Peak Shaving with Minimal Device Wear," Energies, MDPI, vol. 9(6), pages 1-19, June.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:6:p:465-:d:72184
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/6/465/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/6/465/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thai-Thanh Nguyen & Hyeong-Jun Yoo & Hak-Man Kim, 2015. "Application of Model Predictive Control to BESS for Microgrid Control," Energies, MDPI, vol. 8(8), pages 1-16, August.
    2. Bosman, M.G.C. & Bakker, V. & Molderink, A. & Hurink, J.L. & Smit, G.J.M., 2012. "Planning the production of a fleet of domestic combined heat and power generators," European Journal of Operational Research, Elsevier, vol. 216(1), pages 140-151.
    3. Evans, Annette & Strezov, Vladimir & Evans, Tim J., 2012. "Assessment of utility energy storage options for increased renewable energy penetration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4141-4147.
    4. Matthew Rowe & Timur Yunusov & Stephen Haben & William Holderbaum & Ben Potter, 2014. "The Real-Time Optimisation of DNO Owned Storage Devices on the LV Network for Peak Reduction," Energies, MDPI, vol. 7(6), pages 1-24, May.
    5. Ferreira, Helder Lopes & Garde, Raquel & Fulli, Gianluca & Kling, Wil & Lopes, Joao Pecas, 2013. "Characterisation of electrical energy storage technologies," Energy, Elsevier, vol. 53(C), pages 288-298.
    6. Javier Marcos & Iñigo De la Parra & Miguel García & Luis Marroyo, 2014. "Control Strategies to Smooth Short-Term Power Fluctuations in Large Photovoltaic Plants Using Battery Storage Systems," Energies, MDPI, vol. 7(10), pages 1-27, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Uddin, Moslem & Romlie, Mohd Fakhizan & Abdullah, Mohd Faris & Abd Halim, Syahirah & Abu Bakar, Ab Halim & Chia Kwang, Tan, 2018. "A review on peak load shaving strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3323-3332.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gallo, A.B. & Simões-Moreira, J.R. & Costa, H.K.M. & Santos, M.M. & Moutinho dos Santos, E., 2016. "Energy storage in the energy transition context: A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 800-822.
    2. Hermesmann, M. & Grübel, K. & Scherotzki, L. & Müller, T.E., 2021. "Promising pathways: The geographic and energetic potential of power-to-x technologies based on regeneratively obtained hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    3. Wei Ma & Wei Wang & Xuezhi Wu & Ruonan Hu & Fen Tang & Weige Zhang, 2019. "Control Strategy of a Hybrid Energy Storage System to Smooth Photovoltaic Power Fluctuations Considering Photovoltaic Output Power Curtailment," Sustainability, MDPI, vol. 11(5), pages 1-22, March.
    4. Guizzi, Giuseppe Leo & Manno, Michele & Tolomei, Ludovica Maria & Vitali, Ruggero Maria, 2015. "Thermodynamic analysis of a liquid air energy storage system," Energy, Elsevier, vol. 93(P2), pages 1639-1647.
    5. Makhsoos, Ashkan & Mousazadeh, Hossein & Mohtasebi, Seyed Saeid & Abdollahzadeh, Mohammadreza & Jafarbiglu, Hamid & Omrani, Elham & Salmani, Yousef & Kiapey, Ali, 2018. "Design, simulation and experimental evaluation of energy system for an unmanned surface vehicle," Energy, Elsevier, vol. 148(C), pages 362-372.
    6. Feras Alasali & Stephen Haben & Victor Becerra & William Holderbaum, 2017. "Optimal Energy Management and MPC Strategies for Electrified RTG Cranes with Energy Storage Systems," Energies, MDPI, vol. 10(10), pages 1-18, October.
    7. Poullikkas, Andreas, 2013. "A comparative overview of large-scale battery systems for electricity storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 778-788.
    8. Gaudard, Ludovic & Madani, Kaveh, 2019. "Energy storage race: Has the monopoly of pumped-storage in Europe come to an end?," Energy Policy, Elsevier, vol. 126(C), pages 22-29.
    9. Antweiler, Werner, 2021. "Microeconomic models of electricity storage: Price Forecasting, arbitrage limits, curtailment insurance, and transmission line utilization," Energy Economics, Elsevier, vol. 101(C).
    10. Yingbai Xie & Xiaodong Xue, 2018. "Thermodynamic Analysis on an Integrated Liquefied Air Energy Storage and Electricity Generation System," Energies, MDPI, vol. 11(10), pages 1-12, September.
    11. Colmenar-Santos, Antonio & Molina-Ibáñez, Enrique-Luis & Rosales-Asensio, Enrique & Blanes-Peiró, Jorge-Juan, 2018. "Legislative and economic aspects for the inclusion of energy reserve by a superconducting magnetic energy storage: Application to the case of the Spanish electrical system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2455-2470.
    12. Riaz Uddin & Hashim Raza Khan & Asad Arfeen & Muhammad Ayaz Shirazi & Athar Rashid & Umar Shahbaz Khan, 2021. "Energy Storage for Energy Security and Reliability through Renewable Energy Technologies: A New Paradigm for Energy Policies in Turkey and Pakistan," Sustainability, MDPI, vol. 13(5), pages 1-17, March.
    13. Edison Banguero & Antonio Correcher & Ángel Pérez-Navarro & Francisco Morant & Andrés Aristizabal, 2018. "A Review on Battery Charging and Discharging Control Strategies: Application to Renewable Energy Systems," Energies, MDPI, vol. 11(4), pages 1-15, April.
    14. H. Eduardo Ariza Chacón & Edison Banguero & Antonio Correcher & Ángel Pérez-Navarro & Francisco Morant, 2018. "Modelling, Parameter Identification, and Experimental Validation of a Lead Acid Battery Bank Using Evolutionary Algorithms," Energies, MDPI, vol. 11(9), pages 1-14, September.
    15. Sarrias-Mena, Raúl & Fernández-Ramírez, Luis M. & García-Vázquez, Carlos Andrés & Jurado, Francisco, 2014. "Fuzzy logic based power management strategy of a multi-MW doubly-fed induction generator wind turbine with battery and ultracapacitor," Energy, Elsevier, vol. 70(C), pages 561-576.
    16. Izaskun Garrido & Aitor J. Garrido & Stefano Coda & Hoang B. Le & Jean Marc Moret, 2016. "Real Time Hybrid Model Predictive Control for the Current Profile of the Tokamak à Configuration Variable (TCV)," Energies, MDPI, vol. 9(8), pages 1-14, August.
    17. Zakeri, Behnam & Syri, Sanna, 2015. "Electrical energy storage systems: A comparative life cycle cost analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 569-596.
    18. Barelli, L. & Bidini, G. & Bonucci, F., 2016. "A micro-grid operation analysis for cost-effective battery energy storage and RES plants integration," Energy, Elsevier, vol. 113(C), pages 831-844.
    19. Federica Cucchiella & Idiano D’Adamo & Paolo Rosa, 2015. "Industrial Photovoltaic Systems: An Economic Analysis in Non-Subsidized Electricity Markets," Energies, MDPI, vol. 8(11), pages 1-16, November.
    20. Shahmohammadi, Ali & Sioshansi, Ramteen & Conejo, Antonio J. & Afsharnia, Saeed, 2018. "Market equilibria and interactions between strategic generation, wind, and storage," Applied Energy, Elsevier, vol. 220(C), pages 876-892.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:6:p:465-:d:72184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.