IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v196y2022icp1366-1375.html
   My bibliography  Save this article

Sizing of energy storage systems for ramp rate control of photovoltaic strings

Author

Listed:
  • Lappalainen, Kari
  • Valkealahti, Seppo

Abstract

In this article, a comprehensive study on the sizing of energy storage systems (ESS) for ramp rate (RR) control of photovoltaic (PV) strings is presented. The effects of RR limit and inverter sizing, including their combined effect, on the sizing of the ESS are herein studied systematically for the first time. The study is based on 38 days of current–voltage curve measurements of a PV string of 23 PV modules. The results show that the daily irradiance profile has a crucial effect on the ESS power and energy requirements. It was found that an ESS power rating of 60% of the PV string nominal power is adequate to smooth almost all detected PV power ramps even with strict RR limits. With a typical DC/AC power ratio of 1.5, about 1.0 h of energy storage capacity is needed at the nominal power of the PV string to smooth all PV power ramps. The results illustrate that the set RR limit and the inverter sizing are important factors for sizing the ESS for PV RR control. Moreover, the results indicate that the needed ESS power capacity can be considerably reduced by smoothing the fastest upward power ramps by power curtailment.

Suggested Citation

  • Lappalainen, Kari & Valkealahti, Seppo, 2022. "Sizing of energy storage systems for ramp rate control of photovoltaic strings," Renewable Energy, Elsevier, vol. 196(C), pages 1366-1375.
  • Handle: RePEc:eee:renene:v:196:y:2022:i:c:p:1366-1375
    DOI: 10.1016/j.renene.2022.07.069
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122010709
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.07.069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lappalainen, Kari & Wang, Guang C. & Kleissl, Jan, 2020. "Estimation of the largest expected photovoltaic power ramp rates," Applied Energy, Elsevier, vol. 278(C).
    2. Cirés, E. & Marcos, J. & de la Parra, I. & García, M. & Marroyo, L., 2019. "The potential of forecasting in reducing the LCOE in PV plants under ramp-rate restrictions," Energy, Elsevier, vol. 188(C).
    3. Wang, H.X. & Muñoz-García, M.A. & Moreda, G.P. & Alonso-García, M.C., 2018. "Optimum inverter sizing of grid-connected photovoltaic systems based on energetic and economic considerations," Renewable Energy, Elsevier, vol. 118(C), pages 709-717.
    4. Shivashankar, S. & Mekhilef, Saad & Mokhlis, Hazlie & Karimi, M., 2016. "Mitigating methods of power fluctuation of photovoltaic (PV) sources – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1170-1184.
    5. Cabrera-Tobar, Ana & Bullich-Massagué, Eduard & Aragüés-Peñalba, Mònica & Gomis-Bellmunt, Oriol, 2016. "Review of advanced grid requirements for the integration of large scale photovoltaic power plants in the transmission system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 971-987.
    6. Bridier, Laurent & Hernández-Torres, David & David, Mathieu & Lauret, Phillipe, 2016. "A heuristic approach for optimal sizing of ESS coupled with intermittent renewable sources systems," Renewable Energy, Elsevier, vol. 91(C), pages 155-165.
    7. Lappalainen, Kari & Valkealahti, Seppo, 2021. "Experimental study of the maximum power point characteristics of partially shaded photovoltaic strings," Applied Energy, Elsevier, vol. 301(C).
    8. João Martins & Sergiu Spataru & Dezso Sera & Daniel-Ioan Stroe & Abderezak Lashab, 2019. "Comparative Study of Ramp-Rate Control Algorithms for PV with Energy Storage Systems," Energies, MDPI, vol. 12(7), pages 1-15, April.
    9. Lappalainen, Kari & Valkealahti, Seppo, 2017. "Output power variation of different PV array configurations during irradiance transitions caused by moving clouds," Applied Energy, Elsevier, vol. 190(C), pages 902-910.
    10. Chen, Xiaoyang & Du, Yang & Lim, Enggee & Wen, Huiqing & Yan, Ke & Kirtley, James, 2020. "Power ramp-rates of utility-scale PV systems under passing clouds: Module-level emulation with cloud shadow modeling," Applied Energy, Elsevier, vol. 268(C).
    11. Rampinelli, G.A. & Krenzinger, A. & Chenlo Romero, F., 2014. "Mathematical models for efficiency of inverters used in grid connected photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 578-587.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fernando M. Camilo & Paulo Santos, 2023. "Technical-Economic Evaluation of Residential Wind and Photovoltaic Systems with Self-Consumption and Storage Systems in Portugal," Energies, MDPI, vol. 16(4), pages 1-21, February.
    2. Micke Talvi & Tomi Roinila & Kari Lappalainen, 2023. "Effects of Ramp Rate Limit on Sizing of Energy Storage Systems for PV, Wind and PV–Wind Power Plants," Energies, MDPI, vol. 16(11), pages 1-18, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lappalainen, Kari & Wang, Guang C. & Kleissl, Jan, 2020. "Estimation of the largest expected photovoltaic power ramp rates," Applied Energy, Elsevier, vol. 278(C).
    2. Lappalainen, Kari & Valkealahti, Seppo, 2021. "Experimental study of the maximum power point characteristics of partially shaded photovoltaic strings," Applied Energy, Elsevier, vol. 301(C).
    3. Gonzalez-Moreno, A. & Marcos, J. & de la Parra, I. & Marroyo, L., 2022. "A PV ramp-rate control strategy to extend battery lifespan using forecasting," Applied Energy, Elsevier, vol. 323(C).
    4. Chen, Xiaoyang & Du, Yang & Lim, Enggee & Fang, Lurui & Yan, Ke, 2022. "Towards the applicability of solar nowcasting: A practice on predictive PV power ramp-rate control," Renewable Energy, Elsevier, vol. 195(C), pages 147-166.
    5. Arévalo, Paul & Benavides, Dario & Tostado-Véliz, Marcos & Aguado, José A. & Jurado, Francisco, 2023. "Smart monitoring method for photovoltaic systems and failure control based on power smoothing techniques," Renewable Energy, Elsevier, vol. 205(C), pages 366-383.
    6. Polleux, Louis & Guerassimoff, Gilles & Marmorat, Jean-Paul & Sandoval-Moreno, John & Schuhler, Thierry, 2022. "An overview of the challenges of solar power integration in isolated industrial microgrids with reliability constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    7. Nouha Mansouri & Abderezak Lashab & Dezso Sera & Josep M. Guerrero & Adnen Cherif, 2019. "Large Photovoltaic Power Plants Integration: A Review of Challenges and Solutions," Energies, MDPI, vol. 12(19), pages 1-16, October.
    8. Catalina González-Castaño & Carlos Restrepo & Javier Revelo-Fuelagán & Leandro L. Lorente-Leyva & Diego H. Peluffo-Ordóñez, 2021. "A Fast-Tracking Hybrid MPPT Based on Surface-Based Polynomial Fitting and P&O Methods for Solar PV under Partial Shaded Conditions," Mathematics, MDPI, vol. 9(21), pages 1-23, October.
    9. Valentin Silvera Diaz & Daniel Augusto Cantane & André Quites Ordovás Santos & Oswaldo Hideo Ando Junior, 2021. "Comparative Analysis of Degradation Assessment of Battery Energy Storage Systems in PV Smoothing Application," Energies, MDPI, vol. 14(12), pages 1-16, June.
    10. Zhang, Yanyun & Xue, Peng & Zhao, Yifan & Zhang, Qianqian & Bai, Gongxun & Peng, Jinqing & Li, Bojia, 2024. "Spectra measurement and clustering analysis of global horizontal irradiance for solar energy application," Renewable Energy, Elsevier, vol. 222(C).
    11. Tekai Eddine Khalil Zidane & Mohd Rafi Adzman & Mohammad Faridun Naim Tajuddin & Samila Mat Zali & Ali Durusu & Saad Mekhilef, 2020. "Optimal Design of Photovoltaic Power Plant Using Hybrid Optimisation: A Case of South Algeria," Energies, MDPI, vol. 13(11), pages 1-28, June.
    12. Tareen, Wajahat Ullah & Mekhilef, Saad & Seyedmahmoudian, Mehdi & Horan, Ben, 2017. "Active power filter (APF) for mitigation of power quality issues in grid integration of wind and photovoltaic energy conversion system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 635-655.
    13. Terrén-Serrano, G. & Martínez-Ramón, M., 2023. "Kernel learning for intra-hour solar forecasting with infrared sky images and cloud dynamic feature extraction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    14. Huda, A.S.N. & Živanović, R., 2017. "Large-scale integration of distributed generation into distribution networks: Study objectives, review of models and computational tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 974-988.
    15. Wei Ma & Wei Wang & Xuezhi Wu & Ruonan Hu & Fen Tang & Weige Zhang, 2019. "Control Strategy of a Hybrid Energy Storage System to Smooth Photovoltaic Power Fluctuations Considering Photovoltaic Output Power Curtailment," Sustainability, MDPI, vol. 11(5), pages 1-22, March.
    16. Chen, Xiaoyang & Du, Yang & Lim, Enggee & Wen, Huiqing & Yan, Ke & Kirtley, James, 2020. "Power ramp-rates of utility-scale PV systems under passing clouds: Module-level emulation with cloud shadow modeling," Applied Energy, Elsevier, vol. 268(C).
    17. Terrén-Serrano, Guillermo & Martínez-Ramón, Manel, 2021. "Comparative analysis of methods for cloud segmentation in ground-based infrared images," Renewable Energy, Elsevier, vol. 175(C), pages 1025-1040.
    18. Hookoom, Tavish & Bangarigadu, Kaviraj & Ramgolam, Yatindra Kumar, 2022. "Optimisation of geographically deployed PV parks for reduction of intermittency to enhance grid stability," Renewable Energy, Elsevier, vol. 187(C), pages 1020-1036.
    19. Terrén-Serrano, Guillermo & Martínez-Ramón, Manel, 2021. "Multi-layer wind velocity field visualization in infrared images of clouds for solar irradiance forecasting," Applied Energy, Elsevier, vol. 288(C).
    20. Mohammad Junaid Khan & Divesh Kumar & Yogendra Narayan & Hasmat Malik & Fausto Pedro García Márquez & Carlos Quiterio Gómez Muñoz, 2022. "A Novel Artificial Intelligence Maximum Power Point Tracking Technique for Integrated PV-WT-FC Frameworks," Energies, MDPI, vol. 15(9), pages 1-35, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:196:y:2022:i:c:p:1366-1375. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.