IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i3p646-d200919.html
   My bibliography  Save this article

Reclaimed Polymers as Asphalt Binder Modifiers for More Sustainable Roads: A Review

Author

Listed:
  • Luzana Brasileiro

    (Departamento de Construção Civil e Arquitetura, Universidade Federal do Piauí, Teresina 64.049-550, Brazil)

  • Fernando Moreno-Navarro

    (Construction Engineering Laboratory, University of Granada (LabIC.UGR), 18071 Granada, Spain)

  • Raúl Tauste-Martínez

    (Construction Engineering Laboratory, University of Granada (LabIC.UGR), 18071 Granada, Spain)

  • Jose Matos

    (Departamento de Construção Civil e Arquitetura, Universidade Federal do Piauí, Teresina 64.049-550, Brazil)

  • Maria del Carmen Rubio-Gámez

    (Construction Engineering Laboratory, University of Granada (LabIC.UGR), 18071 Granada, Spain)

Abstract

The use of polymer-modified binders in asphalt mixtures has become more widespread due to their reduced thermal susceptibility and improved rutting and fatigue resistance. Nevertheless, their high cost limits their application, thus making the use of reclaimed polymers (RP) an interesting alternative for both reducing price and extending the service life of pavements. This paper; therefore, presents a comparative review of the recycled polymers most commonly studied as bitumen modifiers: polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), ethyl vinyl acetate (EVA), and ground tire rubber (GTR), in order to facilitate their selection and extend the use of the bitumen. The differences in terms of melting point, mixing conditions, and maximum quantity of added polymer are analyzed. Moreover, their effect on the mechanical behavior of the asphalt binders and their stability with and without the use of additives is presented. According to the literature revision, the performance of the new binder is more influenced by the kind of polymer that was incorporated and the mixing conditions than by the base bitumen that was chosen, although rheological evaluation is needed to fully understand the modification mechanisms of the modified binder. In general terms, plastomers have a stronger effect in terms of increasing the stiffness of the bitumen in comparison with crumb rubber (elastomers), thus providing an improved rutting resistance. The joint use of polyethylene (plastomer) and crumb rubber (elastomer) can be an interesting option for its recycling potential and mechanical performance, although further study is needed to achieve stable bitumen across the entire range of temperatures; additives, such as maleic anhydride (MA), are commonly employed to improve the stability of the binder and enhance its characteristics, but their use could limit the economic benefits of using recycled materials.

Suggested Citation

  • Luzana Brasileiro & Fernando Moreno-Navarro & Raúl Tauste-Martínez & Jose Matos & Maria del Carmen Rubio-Gámez, 2019. "Reclaimed Polymers as Asphalt Binder Modifiers for More Sustainable Roads: A Review," Sustainability, MDPI, vol. 11(3), pages 1-20, January.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:3:p:646-:d:200919
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/3/646/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/3/646/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jack P. C. Kleijnen, 2015. "Response Surface Methodology," International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 81-104, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saleh A. AL-Taheri & Ahmed M. Awed & Alaa R. Gabr & Sherif M. El-Badawy, 2023. "Evaluation of Waste Bottle Crates in the Form of Pyro-Oil and Fine Granules as Bitumen Rejuvenators and Modifiers," Sustainability, MDPI, vol. 15(14), pages 1-25, July.
    2. Abdalrhman Milad & Ahmed Suliman B. Ali & Ali Mohammed Babalghaith & Zubair Ahmed Memon & Nuha S. Mashaan & Salaheddin Arafa & Nur Izzi Md. Yusoff, 2021. "Utilisation of Waste-Based Geopolymer in Asphalt Pavement Modification and Construction—A Review," Sustainability, MDPI, vol. 13(6), pages 1-21, March.
    3. Xuedong Guo & Xing Chen & Yingsong Li & Zhun Li & Wei Guo, 2019. "Using Sustainable Oil Shale Waste Powder Treated with Silane Coupling Agent for Enriching the Performance of Asphalt and Asphalt Mixture," Sustainability, MDPI, vol. 11(18), pages 1-23, September.
    4. Diana Movilla-Quesada & Aitor C. Raposeiras & Edgardo Guíñez & Almudena Frechilla-Alonso, 2023. "A Comparative Study of the Effect of Moisture Susceptibility on Polyethylene Terephthalate–Modified Asphalt Mixes under Different Regulatory Procedures," Sustainability, MDPI, vol. 15(19), pages 1-17, October.
    5. Irina Glushankova & Aleksandr Ketov & Marina Krasnovskikh & Larisa Rudakova & Iakov Vaisman, 2019. "End of Life Tires as a Possible Source of Toxic Substances Emission in the Process of Combustion," Resources, MDPI, vol. 8(2), pages 1-10, June.
    6. Bruno Crisman & Giulio Ossich & Lorenzo De Lorenzi & Paolo Bevilacqua & Roberto Roberti, 2020. "A Laboratory Assessment of the Influence of Crumb Rubber in Hot Mix Asphalt with Recycled Steel Slag," Sustainability, MDPI, vol. 12(19), pages 1-21, September.
    7. Ahmed Eltwati & Ramadhansyah Putra Jaya & Azman Mohamed & Euniza Jusli & Zaid Al-Saffar & Mohd Rosli Hainin & Mahmoud Enieb, 2023. "Effect of Warm Mix Asphalt (WMA) Antistripping Agent on Performance of Waste Engine Oil-Rejuvenated Asphalt Binders and Mixtures," Sustainability, MDPI, vol. 15(4), pages 1-27, February.
    8. Dan Dobrotă & Gabriela Dobrotă, 2019. "Reducing of Energy Consumption by Improving the Reclaiming Technology in Autoclave of a Rubber Wastes," Energies, MDPI, vol. 12(8), pages 1-18, April.
    9. Shyaamkrishnan Vigneswaran & Jihyeon Yun & Kyu-Dong Jeong & Moon-Sup Lee & Soon-Jae Lee, 2023. "Effect of Crumb Rubber Modifier Particle Size on Storage Stability of Rubberized Binders," Sustainability, MDPI, vol. 15(18), pages 1-14, September.
    10. Wensheng Wang & Yongchun Cheng & Heping Chen & Guojin Tan & Zehua Lv & Yunshuo Bai, 2019. "Study on the Performances of Waste Crumb Rubber Modified Asphalt Mixture with Eco-Friendly Diatomite and Basalt Fiber," Sustainability, MDPI, vol. 11(19), pages 1-15, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen-Tsu Wang, 2016. "Integrating grey sequencing with the genetic algorithm--immune algorithm to optimise touch panel cover glass polishing process parameter design," International Journal of Production Research, Taylor & Francis Journals, vol. 54(16), pages 4882-4893, August.
    2. Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    3. Qin, Caiyan & Kim, Joong Bae & Lee, Bong Jae, 2019. "Performance analysis of a direct-absorption parabolic-trough solar collector using plasmonic nanofluids," Renewable Energy, Elsevier, vol. 143(C), pages 24-33.
    4. Kaushik, Lav Kumar & Muthukumar, P., 2020. "Thermal and economic performance assessments of waste cooking oil /kerosene blend operated pressure cook-stove with porous radiant burner," Energy, Elsevier, vol. 206(C).
    5. Yaman, Hayri & Yesilyurt, Murat Kadir & Uslu, Samet, 2022. "Simultaneous optimization of multiple engine parameters of a 1-heptanol / gasoline fuel blends operated a port-fuel injection spark-ignition engine using response surface methodology approach," Energy, Elsevier, vol. 238(PC).
    6. Visva Bharati Barua & Mariya Munir, 2021. "A Review on Synchronous Microalgal Lipid Enhancement and Wastewater Treatment," Energies, MDPI, vol. 14(22), pages 1-20, November.
    7. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    8. D. M. D. Rasika & Janak K. Vidanarachchi & Selma F. Luiz & Denise Rosane Perdomo Azeredo & Adriano G. Cruz & Chaminda Senaka Ranadheera, 2021. "Probiotic Delivery through Non-Dairy Plant-Based Food Matrices," Agriculture, MDPI, vol. 11(7), pages 1-23, June.
    9. M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    10. Muhammad, Gul & Potchamyou Ngatcha, Ange Douglas & Lv, Yongkun & Xiong, Wenlong & El-Badry, Yaser A. & Asmatulu, Eylem & Xu, Jingliang & Alam, Md Asraful, 2022. "Enhanced biodiesel production from wet microalgae biomass optimized via response surface methodology and artificial neural network," Renewable Energy, Elsevier, vol. 184(C), pages 753-764.
    11. Renzi, Massimiliano & Bietresato, Marco & Mazzetto, Fabrizio, 2016. "An experimental evaluation of the performance of a SI internal combustion engine for agricultural purposes fuelled with different bioethanol blends," Energy, Elsevier, vol. 115(P1), pages 1069-1080.
    12. Chamberlin Stéphane Azebaze Mboving & Zbigniew Hanzelka & Andrzej Firlit, 2022. "Analysis of the Factors Having an Influence on the LC Passive Harmonic Filter Work Efficiency," Energies, MDPI, vol. 15(5), pages 1-51, March.
    13. Lu Chen & Qincheng Chen & Pinhua Rao & Lili Yan & Alghashm Shakib & Guoqing Shen, 2018. "Formulating and Optimizing a Novel Biochar-Based Fertilizer for Simultaneous Slow-Release of Nitrogen and Immobilization of Cadmium," Sustainability, MDPI, vol. 10(8), pages 1-14, August.
    14. Biranchi Panda & K. Shankhwar & Akhil Garg & M. M. Savalani, 2019. "Evaluation of genetic programming-based models for simulating bead dimensions in wire and arc additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 30(2), pages 809-820, February.
    15. Hasheminasab, M. & Kermani, M.J. & Nourazar, S.S. & Khodsiani, M.H., 2020. "A novel experimental based statistical study for water management in proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 264(C).
    16. Zahedi, Ali Reza & Mirnezami, Seyed Abolfazl, 2020. "Experimental analysis of biomass to biodiesel conversion using a novel renewable combined cycle system," Renewable Energy, Elsevier, vol. 162(C), pages 1177-1194.
    17. Ahmad Abbaszadeh-Mayvan & Barat Ghobadian & Gholamhassan Najafi & Talal Yusaf, 2018. "Intensification of Continuous Biodiesel Production from Waste Cooking Oils Using Shockwave Power Reactor: Process Evaluation and Optimization through Response Surface Methodology (RSM)," Energies, MDPI, vol. 11(10), pages 1-13, October.
    18. Walid Yeddes & Ines Ouerghemmi & Majdi Hammami & Hamza Gadhoumi & Taycir Grati Affes & Salma Nait Mohamed & Wissem Aidi-Wannes & Dorota Witrowa-Rajchert & Moufida Saidani-Tounsi & Małgorzata Nowacka, 2022. "Optimizing the Method of Rosemary Essential Oils Extraction by Using Response Surface Methodology (RSM)-Characterization and Toxicological Assessment," Sustainability, MDPI, vol. 14(7), pages 1-15, March.
    19. Esther Unyime Etim, 2019. "Removal of Methyl Blue Dye from Aqueous Solution by Adsorption unto Ground Nut Waste," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 15(3), pages 11365-11371, March.
    20. de Oliveira, Lucas Guedes & Aquila, Giancarlo & Balestrassi, Pedro Paulo & de Paiva, Anderson Paulo & de Queiroz, Anderson Rodrigo & de Oliveira Pamplona, Edson & Camatta, Ulisses Pessin, 2020. "Evaluating economic feasibility and maximization of social welfare of photovoltaic projects developed for the Brazilian northeastern coast: An attribute agreement analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:3:p:646-:d:200919. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.