IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i22p6433-d287547.html
   My bibliography  Save this article

Towards Circular Economy Solutions for The Management of Rice Processing Residues to Bioenergy via Gasification

Author

Listed:
  • I. Vaskalis

    (Biomass Group, Chemical Engineering Department, Faculty of Engineering, Aristotle University of Thessaloniki (AUTh), 54124 Thessaloniki, Greece)

  • V. Skoulou

    (B3 Challenge Group, Chemical Engineering Department, University of Hull, Cottingham Road, Kingston upon Hull HU6 7RX, UK
    Energy and Environment Institute (EEI), University of Hull, Cottingham Road, Kingston upon Hull HU6 7RX, UK)

  • G. Stavropoulos

    (Biomass Group, Chemical Engineering Department, Faculty of Engineering, Aristotle University of Thessaloniki (AUTh), 54124 Thessaloniki, Greece)

  • A. Zabaniotou

    (Biomass Group, Chemical Engineering Department, Faculty of Engineering, Aristotle University of Thessaloniki (AUTh), 54124 Thessaloniki, Greece)

Abstract

A techno-economic assessment of two circular economy scenarios related to fluidized bed gasification-based systems for combined heat and power (CHP) generation, fueled with rice processing wastes, was conducted. In the first scenario, a gasification unit with 42,700 t/y rice husks capacity provided a waste management industrial symbiosis solution for five small rice-processing companies (SMEs), located at the same area. In the second scenario, a unit of 18,300 t/y rice husks capacity provided a waste management solution to only one rice processing company at the place of waste generation, as a custom-made solution. The first scenario of a cooperative industrial symbiosis approach is the most economically viable, with an annual revenue of 168 €/(t×y) of treated rice husks, a very good payout time (POT = 1.05), and return in investment (ROI = 0.72). The techno-economic assessment was based on experiments performed at a laboratory-scale gasification rig, and on technological configurations of the SMARt-CHP system, a decentralized bioenergy generation system developed at Aristotle University, Greece. The experimental proof of concept of rice husks gasification was studied at a temperature range of 700 to 900 °C, under an under-stoichiometric ratio of O 2 /N 2 (10/90 v/v) as the gasification agent. Producer gas’s Lower Heating Value (LHV) maximized at 800 °C (10.9 MJ/Nm 3 ), while the char’s Brunauer Emmet Teller (BET) surface reached a max of 146 m 2 /g at 900 °C. Recommendations were provided for a pretreatment of rice husks in order to minimize de-fluidization problems of the gasification system due to Si-rich ash. With the application of this model, simultaneous utilization and processing of waste flows from various rice value chain can be achieved towards improving environmental performance of the companies and producing energy and fertilizer by using waste as a fuel and resource with value.

Suggested Citation

  • I. Vaskalis & V. Skoulou & G. Stavropoulos & A. Zabaniotou, 2019. "Towards Circular Economy Solutions for The Management of Rice Processing Residues to Bioenergy via Gasification," Sustainability, MDPI, vol. 11(22), pages 1-21, November.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:22:p:6433-:d:287547
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/22/6433/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/22/6433/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mertzis, Dimitrios & Mitsakis, Panagiotis & Tsiakmakis, Stefanos & Manara, Panagiota & Zabaniotou, Anastasia & Samaras, Zissis, 2014. "Performance analysis of a small-scale combined heat and power system using agricultural biomass residues: The SMARt-CHP demonstration project," Energy, Elsevier, vol. 64(C), pages 367-374.
    2. Rovas, Dimitrios & Zabaniotou, Anastasia, 2015. "Exergy analysis of a small gasification-ICE integrated system for CHP production fueled with Mediterranean agro-food processing wastes: The SMARt-CHP," Renewable Energy, Elsevier, vol. 83(C), pages 510-517.
    3. Darmawan, Arif & Fitrianto, Anggoro Cahyo & Aziz, Muhammad & Tokimatsu, Koji, 2018. "Integrated system of rice production and electricity generation," Applied Energy, Elsevier, vol. 220(C), pages 672-680.
    4. Martin J. Taylor & Hassan A. Alabdrabalameer & Vasiliki Skoulou, 2019. "Choosing Physical, Physicochemical and Chemical Methods of Pre-Treating Lignocellulosic Wastes to Repurpose into Solid Fuels," Sustainability, MDPI, vol. 11(13), pages 1-27, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aravani, Vasiliki P. & Sun, Hangyu & Yang, Ziyi & Liu, Guangqing & Wang, Wen & Anagnostopoulos, George & Syriopoulos, George & Charisiou, Nikolaos D. & Goula, Maria A. & Kornaros, Michael & Papadakis,, 2022. "Agricultural and livestock sector's residues in Greece & China: Comparative qualitative and quantitative characterization for assessing their potential for biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    2. Batara Surya & Haeruddin Saleh & Hamsina Hamsina & Muhammad Idris & Despry Nur Annisa Ahmad, 2021. "Rural Agribusiness-Based Agropolitan Area Development and Environmental Management Sustainability: Regional Economic Growth Perspectives," International Journal of Energy Economics and Policy, Econjournals, vol. 11(1), pages 142-157.
    3. Efthymios Rodias & Eirini Aivazidou & Charisios Achillas & Dimitrios Aidonis & Dionysis Bochtis, 2020. "Water-Energy-Nutrients Synergies in the Agrifood Sector: A Circular Economy Framework," Energies, MDPI, vol. 14(1), pages 1-17, December.
    4. W. A. M. A. N. Illankoon & Chiara Milanese & Alessandro Girella & Puhulwella G. Rathnasiri & K. H. M. Sudesh & Maria Medina Llamas & Maria Cristina Collivignarelli & Sabrina Sorlini, 2022. "Agricultural Biomass-Based Power Generation Potential in Sri Lanka: A Techno-Economic Analysis," Energies, MDPI, vol. 15(23), pages 1-18, November.
    5. Eleonora Fiore & Barbara Stabellini & Paolo Tamborrini, 2020. "A Systemic Design Approach Applied to Rice and Wine Value Chains. The Case of the InnovaEcoFood Project in Piedmont (Italy)," Sustainability, MDPI, vol. 12(21), pages 1-28, November.
    6. Azwifunimunwe Tshikovhi & Tshwafo Ellias Motaung, 2023. "Technologies and Innovations for Biomass Energy Production," Sustainability, MDPI, vol. 15(16), pages 1-21, August.
    7. Włodzimierz Szczepaniak & Monika Zabłocka-Malicka & Rafał Wysokiński & Piotr Rutkowski, 2020. "Intensity of the Process Gas Emission from the Thermal Treatment of the 60–340 mm MSW Fraction under Steam," Sustainability, MDPI, vol. 12(19), pages 1-17, September.
    8. Batara Surya & Despry Nur Annisa Ahmad & Harry Hardian Sakti & Hernita Sahban, 2020. "Land Use Change, Spatial Interaction, and Sustainable Development in the Metropolitan Urban Areas, South Sulawesi Province, Indonesia," Land, MDPI, vol. 9(3), pages 1-43, March.
    9. Mónica Duque-Acevedo & Luis Jesús Belmonte-Ureña & Natalia Yakovleva & Francisco Camacho-Ferre, 2020. "Analysis of the Circular Economic Production Models and Their Approach in Agriculture and Agricultural Waste Biomass Management," IJERPH, MDPI, vol. 17(24), pages 1-32, December.
    10. Angelos-Ikaros Altantzis & Nikolaos-Christos Kallistridis & George Stavropoulos & Anastasia Zabaniotou, 2022. "Peach Seeds Pyrolysis Integrated into a Zero Waste Biorefinery: an Experimental Study," Circular Economy and Sustainability, Springer, vol. 2(1), pages 351-382, March.
    11. Diamantis Almpantis & Anastasia Zabaniotou, 2021. "Technological Solutions and Tools for Circular Bioeconomy in Low-Carbon Transition: Simulation Modeling of Rice Husks Gasification for CHP by Aspen PLUS V9 and Feasibility Study by Aspen Process Econo," Energies, MDPI, vol. 14(7), pages 1-25, April.
    12. Murillo Vetroni Barros & Rômulo Henrique Gomes Jesus & Bruno Silva Ribeiro & Cassiano Moro Piekarski, 2023. "Going in Circles: Key Aspects for Circular Economy Contributions to Agro-industrial Cooperatives," Circular Economy and Sustainability, Springer, vol. 3(2), pages 861-880, June.
    13. Martin J. Taylor & Apostolos K. Michopoulos & Anastasia A. Zabaniotou & Vasiliki Skoulou, 2020. "Probing Synergies between Lignin-Rich and Cellulose Compounds for Gasification," Energies, MDPI, vol. 13(10), pages 1-9, May.
    14. Sivabalan Kaniapan & Jagadeesh Pasupuleti & Kartikeyan Patma Nesan & Haris Nalakath Abubackar & Hadiza Aminu Umar & Temidayo Lekan Oladosu & Segun R. Bello & Eldon R. Rene, 2022. "A Review of the Sustainable Utilization of Rice Residues for Bioenergy Conversion Using Different Valorization Techniques, Their Challenges, and Techno-Economic Assessment," IJERPH, MDPI, vol. 19(6), pages 1-30, March.
    15. W. A. M. A. N. Illankoon & Chiara Milanese & Maria Cristina Collivignarelli & Sabrina Sorlini, 2023. "Value Chain Analysis of Rice Industry by Products in a Circular Economy Context: A Review," Waste, MDPI, vol. 1(2), pages 1-37, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Coady, Joe & Duquette, Jean, 2021. "Quantifying the impacts of biomass driven combined heat and power grids in northern rural and remote communities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    2. Bossink, Bart A.G., 2017. "Demonstrating sustainable energy: A review based model of sustainable energy demonstration projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1349-1362.
    3. Wang, Jiang-Jiang & Yang, Kun & Xu, Zi-Long & Fu, Chao, 2015. "Energy and exergy analyses of an integrated CCHP system with biomass air gasification," Applied Energy, Elsevier, vol. 142(C), pages 317-327.
    4. Martin J. Taylor & Apostolos K. Michopoulos & Anastasia A. Zabaniotou & Vasiliki Skoulou, 2020. "Probing Synergies between Lignin-Rich and Cellulose Compounds for Gasification," Energies, MDPI, vol. 13(10), pages 1-9, May.
    5. Montazerinejad, H. & Eicker, U., 2022. "Recent development of heat and power generation using renewable fuels: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    6. Tagnamas, Zakaria & Lamsyehe, Hamza & Moussaoui, Haytem & Bahammou, Younes & Kouhila, Mounir & Idlimam, Ali & Lamharrar, Abdelkader, 2021. "Energy and exergy analyses of carob pulp drying system based on a solar collector," Renewable Energy, Elsevier, vol. 163(C), pages 495-503.
    7. Mondal, Md. Hasan Tarek & Sarker, Md. Sazzat Hossain, 2024. "Comprehensive energy analysis and environmental sustainability of industrial grain drying," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    8. Rovas, Dimitrios & Zabaniotou, Anastasia, 2015. "Exergy analysis of a small gasification-ICE integrated system for CHP production fueled with Mediterranean agro-food processing wastes: The SMARt-CHP," Renewable Energy, Elsevier, vol. 83(C), pages 510-517.
    9. Gigel Paraschiv & Georgiana Moiceanu & Gheorghe Voicu & Mihai Chitoiu & Petru Cardei & Mirela Nicoleta Dinca & Paula Tudor, 2021. "Optimization Issues of a Hammer Mill Working Process Using Statistical Modelling," Sustainability, MDPI, vol. 13(2), pages 1-20, January.
    10. Sharma, Ashokkumar M. & Kumar, Ajay & Madihally, Sundararajan & Whiteley, James R. & Huhnke, Raymond L., 2014. "Prediction of biomass-generated syngas using extents of major reactions in a continuous stirred-tank reactor," Energy, Elsevier, vol. 72(C), pages 222-232.
    11. Teymoori Hamzehkolaei, Fatemeh & Amjady, Nima, 2018. "A techno-economic assessment for replacement of conventional fossil fuel based technologies in animal farms with biogas fueled CHP units," Renewable Energy, Elsevier, vol. 118(C), pages 602-614.
    12. Costa, M. & La Villetta, M. & Massarotti, N. & Piazzullo, D. & Rocco, V., 2017. "Numerical analysis of a compression ignition engine powered in the dual-fuel mode with syngas and biodiesel," Energy, Elsevier, vol. 137(C), pages 969-979.
    13. Liana Vanyan & Adam Cenian & Karen Trchounian, 2022. "Biogas and Biohydrogen Production Using Spent Coffee Grounds and Alcohol Production Waste," Energies, MDPI, vol. 15(16), pages 1-11, August.
    14. Patuzzi, Francesco & Prando, Dario & Vakalis, Stergios & Rizzo, Andrea Maria & Chiaramonti, David & Tirler, Werner & Mimmo, Tanja & Gasparella, Andrea & Baratieri, Marco, 2016. "Small-scale biomass gasification CHP systems: Comparative performance assessment and monitoring experiences in South Tyrol (Italy)," Energy, Elsevier, vol. 112(C), pages 285-293.
    15. Murugan, S. & Horák, Bohumil, 2016. "A review of micro combined heat and power systems for residential applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 144-162.
    16. Segurado, R. & Pereira, S. & Correia, D. & Costa, M., 2019. "Techno-economic analysis of a trigeneration system based on biomass gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 501-514.
    17. Wegener, Moritz & Malmquist, Anders & Isalgué, Antonio & Martin, Andrew, 2018. "Biomass-fired combined cooling, heating and power for small scale applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 392-410.
    18. de Santoli, Livio & Mancini, Francesco & Nastasi, Benedetto & Piergrossi, Valentina, 2015. "Building integrated bioenergy production (BIBP): Economic sustainability analysis of Bari airport CHP (combined heat and power) upgrade fueled with bioenergy from short chain," Renewable Energy, Elsevier, vol. 81(C), pages 499-508.
    19. Vítor João Pereira Domingues Martinho, 2021. "Agri-Food Contexts in Mediterranean Regions: Contributions to Better Resources Management," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    20. Martínez González, Aldemar & Lesme Jaén, René & Silva Lora, Electo Eduardo, 2020. "Thermodynamic assessment of the integrated gasification-power plant operating in the sawmill industry: An energy and exergy analysis," Renewable Energy, Elsevier, vol. 147(P1), pages 1151-1163.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:22:p:6433-:d:287547. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.