Energy and exergy analyses of carob pulp drying system based on a solar collector
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2020.09.011
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Akbulut, Abdullah & Durmuş, Aydin, 2010. "Energy and exergy analyses of thin layer drying of mulberry in a forced solar dryer," Energy, Elsevier, vol. 35(4), pages 1754-1763.
- Han, Xiaoqu & Liu, Ming & Wu, Kaili & Chen, Weixiong & Xiao, Feng & Yan, Junjie, 2016. "Exergy analysis of the flue gas pre-dried lignite-fired power system based on the boiler with open pulverizing system," Energy, Elsevier, vol. 106(C), pages 285-300.
- Bahammou, Younes & Lamsyehe, Hamza & Kouhila, Mounir & Lamharrar, Abdelkader & Idlimam, Ali & Abdenouri, Naji, 2019. "Valorization of co-products of sardine waste by physical treatment under natural and forced convection solar drying," Renewable Energy, Elsevier, vol. 142(C), pages 110-122.
- Torki-Harchegani, Mehdi & Ghanbarian, Davoud & Ghasemi Pirbalouti, Abdollah & Sadeghi, Morteza, 2016. "Dehydration behaviour, mathematical modelling, energy efficiency and essential oil yield of peppermint leaves undergoing microwave and hot air treatments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 407-418.
- Amer, Baher M.A. & Gottschalk, Klaus & Hossain, M.A., 2018. "Integrated hybrid solar drying system and its drying kinetics of chamomile," Renewable Energy, Elsevier, vol. 121(C), pages 539-547.
- Tagnamas, Zakaria & Bahammou, Younes & Kouhila, Mounir & Hilali, Soukaina & Idlimam, Ali & Lamharrar, Abdelkader, 2020. "Conservation of Moroccan truffle (Terfezia boudieri) using solar drying method," Renewable Energy, Elsevier, vol. 146(C), pages 16-24.
- Mghazli, Safa & Ouhammou, Mourad & Hidar, Nadia & Lahnine, Lamyae & Idlimam, Ali & Mahrouz, Mostafa, 2017. "Drying characteristics and kinetics solar drying of Moroccan rosemary leaves," Renewable Energy, Elsevier, vol. 108(C), pages 303-310.
- Rovas, Dimitrios & Zabaniotou, Anastasia, 2015. "Exergy analysis of a small gasification-ICE integrated system for CHP production fueled with Mediterranean agro-food processing wastes: The SMARt-CHP," Renewable Energy, Elsevier, vol. 83(C), pages 510-517.
- Celma, A.R. & Cuadros, F., 2009. "Energy and exergy analyses of OMW solar drying process," Renewable Energy, Elsevier, vol. 34(3), pages 660-666.
- Rabha, D.K. & Muthukumar, P. & Somayaji, C., 2017. "Energy and exergy analyses of the solar drying processes of ghost chilli pepper and ginger," Renewable Energy, Elsevier, vol. 105(C), pages 764-773.
- Beigi, Mohsen & Tohidi, Mojtaba & Torki-Harchegani, Mehdi, 2017. "Exergetic analysis of deep-bed drying of rough rice in a convective dryer," Energy, Elsevier, vol. 140(P1), pages 374-382.
- Midilli, A. & Kucuk, H., 2003. "Energy and exergy analyses of solar drying process of pistachio," Energy, Elsevier, vol. 28(6), pages 539-556.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ceylin Şirin & Fatih Selimefendigil & Hakan Fehmi Öztop, 2023. "Performance Analysis and Identification of an Indirect Photovoltaic Thermal Dryer with Aluminum Oxide Nano-Embedded Thermal Energy Storage Modification," Sustainability, MDPI, vol. 15(3), pages 1-27, January.
- Kong, Decheng & Wang, Yunfeng & Li, Ming & Liang, Jingkang, 2024. "A comprehensive review of hybrid solar dryers integrated with auxiliary energy and units for agricultural products," Energy, Elsevier, vol. 293(C).
- Hamed Karami & Mohammad Kaveh & Iman Golpour & Esmail Khalife & Robert Rusinek & Bohdan Dobrzański & Marek Gancarz, 2021. "Thermodynamic Evaluation of the Forced Convective Hybrid-Solar Dryer during Drying Process of Rosemary ( Rosmarinus officinalis L.) Leaves," Energies, MDPI, vol. 14(18), pages 1-17, September.
- Gupta, Ankur & Das, Biplab & Biswas, Agnimitra & Mondol, Jayanta Deb, 2022. "Sustainability and 4E analysis of novel solar photovoltaic-thermal solar dryer under forced and natural convection drying," Renewable Energy, Elsevier, vol. 188(C), pages 1008-1021.
- Tagnamas, Zakaria & Idlimam, Ali & Lamharrar, Abdelkader, 2023. "Predictive models of beetroot solar drying process through machine learning algorithms," Renewable Energy, Elsevier, vol. 219(P2).
- Rashidi, Milad & Arabhosseini, Akbar & Samimi-Akhijahani, Hadi & Kermani, Ali M., 2021. "Acceleration the drying process of oleaster (Elaeagnus angustifolia L.) using reflectors and desiccant system in a solar drying system," Renewable Energy, Elsevier, vol. 171(C), pages 526-541.
- Wang, Hui & Torki, Mehdi & Xiao, Hong-Wei & Orsat, Valérie & Raghavan, G.S.V. & Liu, Zi-Liang & Peng, Wen-Jun & Fang, Xiao-Ming, 2022. "Multi-objective analysis of evacuated tube solar-electric hybrid drying setup for drying lotus bee pollen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
- Erick César, López-Vidaña & Ana Lilia, César-Munguía & Octavio, García-Valladares & Orlando, Salgado Sandoval & Alfredo, Domínguez Niño, 2021. "Energy and exergy analyses of a mixed-mode solar dryer of pear slices (Pyrus communis L)," Energy, Elsevier, vol. 220(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bahammou, Younes & Lamsyehe, Hamza & Kouhila, Mounir & Lamharrar, Abdelkader & Idlimam, Ali & Abdenouri, Naji, 2019. "Valorization of co-products of sardine waste by physical treatment under natural and forced convection solar drying," Renewable Energy, Elsevier, vol. 142(C), pages 110-122.
- Lamidi, Rasaq. O. & Jiang, L. & Pathare, Pankaj B. & Wang, Y.D. & Roskilly, A.P., 2019. "Recent advances in sustainable drying of agricultural produce: A review," Applied Energy, Elsevier, vol. 233, pages 367-385.
- Wengang Hao & Shuonan Liu & Baoqi Mi & Yanhua Lai, 2020. "Mathematical Modeling and Performance Analysis of a New Hybrid Solar Dryer of Lemon Slices for Controlling Drying Temperature," Energies, MDPI, vol. 13(2), pages 1-23, January.
- Abiodun Okunola & Timothy Adekanye & Endurance Idahosa, 2021. "Energy and exergy analyses of okra drying process in a forced convection cabinet dryer," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 67(1), pages 8-16.
- Panwar, N.L. & Kaushik, S.C. & Kothari, Surendra, 2012. "A review on energy and exergy analysis of solar dying systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2812-2819.
- Ouaabou, Rachida & Nabil, Bouchra & Ouhammou, Mourad & Idlimam, Ali & Lamharrar, Abdelkader & Ennahli, Said & Hanine, Hafida & Mahrouz, Mostafa, 2020. "Impact of solar drying process on drying kinetics, and on bioactive profile of Moroccan sweet cherry," Renewable Energy, Elsevier, vol. 151(C), pages 908-918.
- Hamza, Lamsyehe & Mounir, Kouhila & Younes, Bahammou & Zakaria, Tagnamas & Haytem, Moussaoui & Hind, Mouhanni & Abdelkader, Lamharrar & Ali, Idlimam, 2020. "Physicochemical study of the conservation of Moroccan anchovies by convective solar drying," Renewable Energy, Elsevier, vol. 152(C), pages 44-54.
- Rabha, D.K. & Muthukumar, P. & Somayaji, C., 2017. "Energy and exergy analyses of the solar drying processes of ghost chilli pepper and ginger," Renewable Energy, Elsevier, vol. 105(C), pages 764-773.
- Tagnamas, Zakaria & Idlimam, Ali & Lamharrar, Abdelkader, 2023. "Predictive models of beetroot solar drying process through machine learning algorithms," Renewable Energy, Elsevier, vol. 219(P2).
- Aghbashlo, Mortaza & Mobli, Hossein & Rafiee, Shahin & Madadlou, Ashkan, 2013. "A review on exergy analysis of drying processes and systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 1-22.
- Nazghelichi, Tayyeb & Kianmehr, Mohammad Hossein & Aghbashlo, Mortaza, 2010. "Thermodynamic analysis of fluidized bed drying of carrot cubes," Energy, Elsevier, vol. 35(12), pages 4679-4684.
- Gilago, Mulatu C. & Chandramohan, V.P., 2022. "Performance evaluation of natural and forced convection indirect type solar dryers during drying ivy gourd: An experimental study," Renewable Energy, Elsevier, vol. 182(C), pages 934-945.
- Rashidi, Milad & Arabhosseini, Akbar & Samimi-Akhijahani, Hadi & Kermani, Ali M., 2021. "Acceleration the drying process of oleaster (Elaeagnus angustifolia L.) using reflectors and desiccant system in a solar drying system," Renewable Energy, Elsevier, vol. 171(C), pages 526-541.
- Moussaoui, Haytem & Bahammou, Younes & Tagnamas, Zakaria & Kouhila, Mounir & Lamharrar, Abdelkader & Idlimam, Ali, 2021. "Application of solar drying on the apple peels using an indirect hybrid solar-electrical forced convection dryer," Renewable Energy, Elsevier, vol. 168(C), pages 131-140.
- Maia, Cristiana Brasil & Ferreira, André Guimarães & Cabezas-Gómez, Luben & de Oliveira Castro Silva, Janaína & de Morais Hanriot, Sérgio, 2017. "Thermodynamic analysis of the drying process of bananas in a small-scale solar updraft tower in Brazil," Renewable Energy, Elsevier, vol. 114(PB), pages 1005-1012.
- Gulcimen, Fevzi & Karakaya, Hakan & Durmus, Aydın, 2016. "Drying of sweet basil with solar air collectors," Renewable Energy, Elsevier, vol. 93(C), pages 77-86.
- Chandrasekar, M. & Senthilkumar, T. & Kumaragurubaran, B. & Fernandes, J. Peter, 2018. "Experimental investigation on a solar dryer integrated with condenser unit of split air conditioner (A/C) for enhancing drying rate," Renewable Energy, Elsevier, vol. 122(C), pages 375-381.
- Madhankumar, S. & Viswanathan, Karthickeyan, 2022. "Computational and experimental study of a novel corrugated-type absorber plate solar collector with thermal energy storage moisture removal device," Applied Energy, Elsevier, vol. 324(C).
- Tagnamas, Zakaria & Bahammou, Younes & Kouhila, Mounir & Hilali, Soukaina & Idlimam, Ali & Lamharrar, Abdelkader, 2020. "Conservation of Moroccan truffle (Terfezia boudieri) using solar drying method," Renewable Energy, Elsevier, vol. 146(C), pages 16-24.
- Ndukwu, M.C. & Bennamoun, L. & Abam, F.I. & Eke, A.B. & Ukoha, D., 2017. "Energy and exergy analysis of a solar dryer integrated with sodium sulfate decahydrate and sodium chloride as thermal storage medium," Renewable Energy, Elsevier, vol. 113(C), pages 1182-1192.
More about this item
Keywords
Activation energy; Carob pulp; Diffusivity coefficient; Energy analysis; Exergy analysis; Solar drying;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:163:y:2021:i:c:p:495-503. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.