IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v72y2014icp222-232.html
   My bibliography  Save this article

Prediction of biomass-generated syngas using extents of major reactions in a continuous stirred-tank reactor

Author

Listed:
  • Sharma, Ashokkumar M.
  • Kumar, Ajay
  • Madihally, Sundararajan
  • Whiteley, James R.
  • Huhnke, Raymond L.

Abstract

Syngas, the main gasification product, is a well-known intermediate for making fuels, chemicals and power. The objective of this study was to develop and validate reaction kinetics-based gasification model using extents of major reactions in a CSTR (continuous stirred-tank reactor) to predict syngas composition and yield. The model was studied by varying biomass and air flowrates from 2.9 to 4.2 drykg/h and 4.5–10kg/h, respectively, with temperature from 801 to 907°C. Results showed significant improvement in the predictions of syngas composition and yield, and gasification efficiency. The extents of gasification reactions indicated that at ERs (equivalence ratios) below 0.32, the water gas reaction contributed the most to the syngas CO and H2 yields. The char oxidation reaction was also the dominating reaction contributing to CO yield at ERs below 0.40. At ERs above 0.29, the Boudouard and methane oxidation reactions were the most dominating reactions contributing to the CO yield while the water gas shift reaction contributed to the H2 yield. The developed model corrected one of the key underlying assumptions that biomass decomposes into elemental forms (C, H, O, N and S), however, gasification temperature, carbon conversion efficiency and tar yield were assumed to be given.

Suggested Citation

  • Sharma, Ashokkumar M. & Kumar, Ajay & Madihally, Sundararajan & Whiteley, James R. & Huhnke, Raymond L., 2014. "Prediction of biomass-generated syngas using extents of major reactions in a continuous stirred-tank reactor," Energy, Elsevier, vol. 72(C), pages 222-232.
  • Handle: RePEc:eee:energy:v:72:y:2014:i:c:p:222-232
    DOI: 10.1016/j.energy.2014.05.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214005763
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.05.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Loha, Chanchal & Chattopadhyay, Himadri & Chatterjee, Pradip K., 2011. "Thermodynamic analysis of hydrogen rich synthetic gas generation from fluidized bed gasification of rice husk," Energy, Elsevier, vol. 36(7), pages 4063-4071.
    2. Martín, Mariano & Grossmann, Ignacio E., 2013. "Optimal use of hybrid feedstock, switchgrass and shale gas for the simultaneous production of hydrogen and liquid fuels," Energy, Elsevier, vol. 55(C), pages 378-391.
    3. Erlach, B. & Harder, B. & Tsatsaronis, G., 2012. "Combined hydrothermal carbonization and gasification of biomass with carbon capture," Energy, Elsevier, vol. 45(1), pages 329-338.
    4. Abrar Inayat & Murni M. Ahmad & Suzana Yusup & Mohamed Ibrahim Abdul Mutalib, 2010. "Biomass Steam Gasification with In-Situ CO2 Capture for Enriched Hydrogen Gas Production: A Reaction Kinetics Modelling Approach," Energies, MDPI, vol. 3(8), pages 1-13, August.
    5. Mertzis, Dimitrios & Mitsakis, Panagiotis & Tsiakmakis, Stefanos & Manara, Panagiota & Zabaniotou, Anastasia & Samaras, Zissis, 2014. "Performance analysis of a small-scale combined heat and power system using agricultural biomass residues: The SMARt-CHP demonstration project," Energy, Elsevier, vol. 64(C), pages 367-374.
    6. Vitasari, Caecilia R. & Jurascik, Martin & Ptasinski, Krzysztof J., 2011. "Exergy analysis of biomass-to-synthetic natural gas (SNG) process via indirect gasification of various biomass feedstock," Energy, Elsevier, vol. 36(6), pages 3825-3837.
    7. Umeki, Kentaro & Yamamoto, Kouichi & Namioka, Tomoaki & Yoshikawa, Kunio, 2010. "High temperature steam-only gasification of woody biomass," Applied Energy, Elsevier, vol. 87(3), pages 791-798, March.
    8. Juraščík, Martin & Sues, Anna & Ptasinski, Krzysztof J., 2010. "Exergy analysis of synthetic natural gas production method from biomass," Energy, Elsevier, vol. 35(2), pages 880-888.
    9. Bang-Møller, C. & Rokni, M. & Elmegaard, B. & Ahrenfeldt, J. & Henriksen, U.B., 2013. "Decentralized combined heat and power production by two-stage biomass gasification and solid oxide fuel cells," Energy, Elsevier, vol. 58(C), pages 527-537.
    10. Ajay Kumar & David D. Jones & Milford A. Hanna, 2009. "Thermochemical Biomass Gasification: A Review of the Current Status of the Technology," Energies, MDPI, vol. 2(3), pages 1-26, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pala, Laxmi Prasad Rao & Wang, Qi & Kolb, Gunther & Hessel, Volker, 2017. "Steam gasification of biomass with subsequent syngas adjustment using shift reaction for syngas production: An Aspen Plus model," Renewable Energy, Elsevier, vol. 101(C), pages 484-492.
    2. Ameur, Houari, 2015. "Energy efficiency of different impellers in stirred tank reactors," Energy, Elsevier, vol. 93(P2), pages 1980-1988.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rovas, Dimitrios & Zabaniotou, Anastasia, 2015. "Exergy analysis of a small gasification-ICE integrated system for CHP production fueled with Mediterranean agro-food processing wastes: The SMARt-CHP," Renewable Energy, Elsevier, vol. 83(C), pages 510-517.
    2. Li, Sheng & Jin, Hongguang & Gao, Lin, 2013. "Cogeneration of substitute natural gas and power from coal by moderate recycle of the chemical unconverted gas," Energy, Elsevier, vol. 55(C), pages 658-667.
    3. Li, Sheng & Jin, Hongguang & Gao, Lin & Zhang, Xiaosong, 2014. "Exergy analysis and the energy saving mechanism for coal to synthetic/substitute natural gas and power cogeneration system without and with CO2 capture," Applied Energy, Elsevier, vol. 130(C), pages 552-561.
    4. Ahsanullah Soomro & Shiyi Chen & Shiwei Ma & Wenguo Xiang, 2018. "Catalytic activities of nickel, dolomite, and olivine for tar removal and H2-enriched gas production in biomass gasification process," Energy & Environment, , vol. 29(6), pages 839-867, September.
    5. Chutichai, Bhawasut & Patcharavorachot, Yaneeporn & Assabumrungrat, Suttichai & Arpornwichanop, Amornchai, 2015. "Parametric analysis of a circulating fluidized bed biomass gasifier for hydrogen production," Energy, Elsevier, vol. 82(C), pages 406-413.
    6. Kohl, T. & Laukkanen, T. & Tuomaala, M. & Niskanen, T. & Siitonen, S. & Järvinen, M.P. & Ahtila, P., 2014. "Comparison of energy efficiency assessment methods: Case Bio-SNG process," Energy, Elsevier, vol. 74(C), pages 88-98.
    7. Mehrpooya, Mehdi & Sharifzadeh, Mohammad Mehdi Moftakhari & Mousavi, Seyed Ali, 2019. "Evaluation of an optimal integrated design multi-fuel multi-product electrical power plant by energy and exergy analyses," Energy, Elsevier, vol. 169(C), pages 61-78.
    8. Kolb, Sebastian & Plankenbühler, Thomas & Hofmann, Katharina & Bergerson, Joule & Karl, Jürgen, 2021. "Life cycle greenhouse gas emissions of renewable gas technologies: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    9. Gai, Chao & Dong, Yuping & Zhang, Tonghui, 2014. "Distribution of sulfur species in gaseous and condensed phase during downdraft gasification of corn straw," Energy, Elsevier, vol. 64(C), pages 248-258.
    10. Ahmed, Tigabwa Y. & Ahmad, Murni M. & Yusup, Suzana & Inayat, Abrar & Khan, Zakir, 2012. "Mathematical and computational approaches for design of biomass gasification for hydrogen production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2304-2315.
    11. Shie, Je-Lueng & Chen, Li-Xun & Lin, Kae-Long & Chang, Ching-Yuan, 2014. "Plasmatron gasification of biomass lignocellulosic waste materials derived from municipal solid waste," Energy, Elsevier, vol. 66(C), pages 82-89.
    12. Safarian, Sahar & Unnþórsson, Rúnar & Richter, Christiaan, 2019. "A review of biomass gasification modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 378-391.
    13. Qitai Eri & Wenzhen Wu & Xinjun Zhao, 2017. "Numerical Investigation of the Air-Steam Biomass Gasification Process Based on Thermodynamic Equilibrium Model," Energies, MDPI, vol. 10(12), pages 1-19, December.
    14. Parvez, Ashak Mahmud & Hafner, Selina & Hornberger, Matthias & Schmid, Max & Scheffknecht, Günter, 2021. "Sorption enhanced gasification (SEG) of biomass for tailored syngas production with in-situ CO2 capture: Current status, process scale-up experiences and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    15. Naraharisetti, Pavan Kumar & Lakshminarayanan, S. & Karimi, I.A., 2014. "Design of biomass and natural gas based IGFC using multi-objective optimization," Energy, Elsevier, vol. 73(C), pages 635-652.
    16. Li, Sheng & Ji, Xiaozhou & Zhang, Xiaosong & Gao, Lin & Jin, Hongguang, 2014. "Coal to SNG: Technical progress, modeling and system optimization through exergy analysis," Applied Energy, Elsevier, vol. 136(C), pages 98-109.
    17. Antonio Molino & Vincenzo Larocca & Simeone Chianese & Dino Musmarra, 2018. "Biofuels Production by Biomass Gasification: A Review," Energies, MDPI, vol. 11(4), pages 1-31, March.
    18. Song, Guohui & Xiao, Jun & Yan, Chao & Gu, Haiming & Zhao, Hao, 2022. "Quality of gaseous biofuels: Statistical assessment and guidance on production technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    19. Sansaniwal, S.K. & Pal, K. & Rosen, M.A. & Tyagi, S.K., 2017. "Recent advances in the development of biomass gasification technology: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 363-384.
    20. Sansaniwal, S.K. & Rosen, M.A. & Tyagi, S.K., 2017. "Global challenges in the sustainable development of biomass gasification: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 23-43.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:72:y:2014:i:c:p:222-232. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.