IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i7p2006-d530465.html
   My bibliography  Save this article

Technological Solutions and Tools for Circular Bioeconomy in Low-Carbon Transition: Simulation Modeling of Rice Husks Gasification for CHP by Aspen PLUS V9 and Feasibility Study by Aspen Process Economic Analyzer

Author

Listed:
  • Diamantis Almpantis

    (Circular Bioeconomy and Sustainability Research Group, Department of Chemical Engineering, Engineering School, Aristotle University of Thessaloniki, 54 124 Thessaloniki, Greece)

  • Anastasia Zabaniotou

    (Circular Bioeconomy and Sustainability Research Group, Department of Chemical Engineering, Engineering School, Aristotle University of Thessaloniki, 54 124 Thessaloniki, Greece)

Abstract

This study explored the suitability of simulation tools for accurately predicting fluidized bed gasification in various scenarios without disturbing the operational system, and dedicating time to experimentation, in the aim of benefiting the decision makers and investors of the low-carbon waste-based bioenergy sector, in accelerating circular bioeconomy solutions. More specifically, this study aimed to offer a customized circular bioeconomy solution for a rice processing residue. The objectives were the simulation and economic assessment of an air atmospheric fluidized bed gasification system fueled with rice husk, for combined heat and power generation, by using the tools of Aspen Plus V9, and the Aspen Process Economic Analyzer. The simulation model was based on the Gibbs energy minimization concept. The technological configurations of the SMARt-CHP technology were used. A parametric study was conducted to understand the influence of process variables on product yield, while three different scenarios were compared: (1) air gasification; (2) steam gasification; and (3) oxygen-steam gasification-based scenario. Simulated results show good accuracy for the prediction of H2 in syngas from air gasification, but not for the other gas components, especially regarding CO and CH4 content. It seems that the RGIBBS and Gibbs free minimization concept is far from simulating the operation of a fluidized bed gasifier. The air gasification scenario for a capacity of 25.000 t/y rice husk was assessed for its economic viability. The economic assessment resulted in net annual earnings of EUR 5.1 million and a positive annual revenue of EUR 168/(t/y), an excellent pay out time (POT = 0.21) and return of investment (ROI = 2.8). The results are dependent on the choices and assumptions made.

Suggested Citation

  • Diamantis Almpantis & Anastasia Zabaniotou, 2021. "Technological Solutions and Tools for Circular Bioeconomy in Low-Carbon Transition: Simulation Modeling of Rice Husks Gasification for CHP by Aspen PLUS V9 and Feasibility Study by Aspen Process Econo," Energies, MDPI, vol. 14(7), pages 1-25, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:7:p:2006-:d:530465
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/7/2006/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/7/2006/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tungalag, Azjargal & Lee, BongJu & Yadav, Manoj & Akande, Olugbenga, 2020. "Yield prediction of MSW gasification including minor species through ASPEN plus simulation," Energy, Elsevier, vol. 198(C).
    2. I. Vaskalis & V. Skoulou & G. Stavropoulos & A. Zabaniotou, 2019. "Towards Circular Economy Solutions for The Management of Rice Processing Residues to Bioenergy via Gasification," Sustainability, MDPI, vol. 11(22), pages 1-21, November.
    3. Ismail, Tamer M. & Monteiro, Eliseu & Ramos, Ana & El-Salam, M. Abd & Rouboa, Abel, 2019. "An Eulerian model for forest residues gasification in a plasma gasifier," Energy, Elsevier, vol. 182(C), pages 1069-1083.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Koppiahraj Karuppiah & Bathrinath Sankaranarayanan & Syed Mithun Ali & Ernesto D. R. Santibanez Gonzalez, 2023. "Impact of Circular Bioeconomy on Industry’s Sustainable Performance: A Critical Literature Review and Future Research Directions Analysis," Sustainability, MDPI, vol. 15(14), pages 1-17, July.
    2. Jacek Roman & Robert Wróblewski & Beata Klojzy-Karczmarczyk & Bartosz Ceran, 2023. "Energetic, Economic and Environmental (3E) Analysis of a RES-Waste Gasification Plant with Syngas Storage Cooperation," Energies, MDPI, vol. 16(4), pages 1-29, February.
    3. Anna Mazzi & Jingzheng Ren, 2021. "Circular Economy in Low-Carbon Transition," Energies, MDPI, vol. 14(23), pages 1-2, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Angelos-Ikaros Altantzis & Nikolaos-Christos Kallistridis & George Stavropoulos & Anastasia Zabaniotou, 2022. "Peach Seeds Pyrolysis Integrated into a Zero Waste Biorefinery: an Experimental Study," Circular Economy and Sustainability, Springer, vol. 2(1), pages 351-382, March.
    2. Matheus Oliveira & Ana Ramos & Tamer M. Ismail & Eliseu Monteiro & Abel Rouboa, 2022. "A Review on Plasma Gasification of Solid Residues: Recent Advances and Developments," Energies, MDPI, vol. 15(4), pages 1-21, February.
    3. Yin, Kexin & Wei, Ranran & Ruan, Jiuxu & Cui, Peizhe & Zhu, Zhaoyou & Wang, Yinglong & Zhao, Xinling, 2023. "Life cycle assessment and life cycle cost analysis of surgical mask from production to recycling into hydrogen process," Energy, Elsevier, vol. 283(C).
    4. Zhou, Jianzhao & Ayub, Yousaf & Shi, Tao & Ren, Jingzheng & He, Chang, 2024. "Sustainable co-valorization of medical waste and biomass waste: Innovative process design, optimization and assessment," Energy, Elsevier, vol. 288(C).
    5. Ismail, Tamer M. & Kobayashi, Yasunori & Yoshikawa, Kunio & Lu, Ding & Kobori, Takahiro & Araki, Kuniomi & Kanazawa, Kiryu & Takahashi, Fumitake & Abd El-Salam, M., 2020. "Numerical investigation on the effect of electron injected air for thermal decomposition of solid waste," Applied Energy, Elsevier, vol. 269(C).
    6. Batara Surya & Despry Nur Annisa Ahmad & Harry Hardian Sakti & Hernita Sahban, 2020. "Land Use Change, Spatial Interaction, and Sustainable Development in the Metropolitan Urban Areas, South Sulawesi Province, Indonesia," Land, MDPI, vol. 9(3), pages 1-43, March.
    7. Ismail, Tamer M. & Yoshikawa, Kunio & Kobori, Takahiro & Kobayashi, Yoshinori & Kanazawa, Kiryu & Takahashi, Fumitake & Abd El-Salam, M., 2022. "Effect of electron injected air on the gasification performance of biomass," Applied Energy, Elsevier, vol. 311(C).
    8. Mónica Duque-Acevedo & Luis Jesús Belmonte-Ureña & Natalia Yakovleva & Francisco Camacho-Ferre, 2020. "Analysis of the Circular Economic Production Models and Their Approach in Agriculture and Agricultural Waste Biomass Management," IJERPH, MDPI, vol. 17(24), pages 1-32, December.
    9. Martin J. Taylor & Apostolos K. Michopoulos & Anastasia A. Zabaniotou & Vasiliki Skoulou, 2020. "Probing Synergies between Lignin-Rich and Cellulose Compounds for Gasification," Energies, MDPI, vol. 13(10), pages 1-9, May.
    10. Eleonora Fiore & Barbara Stabellini & Paolo Tamborrini, 2020. "A Systemic Design Approach Applied to Rice and Wine Value Chains. The Case of the InnovaEcoFood Project in Piedmont (Italy)," Sustainability, MDPI, vol. 12(21), pages 1-28, November.
    11. Mo, Wenyu & Xiong, Zhe & Leong, Huiyi & Gong, Xi & Jiang, Long & Xu, Jun & Su, Sheng & Hu, Song & Wang, Yi & Xiang, Jun, 2022. "Processes simulation and environmental evaluation of biofuel production via Co-pyrolysis of tropical agricultural waste," Energy, Elsevier, vol. 242(C).
    12. Pawlak-Kruczek, Halina & Mularski, Jakub & Ostrycharczyk, Michał & Czerep, Michał & Baranowski, Marcin & Mączka, Tadeusz & Sadowski, Krzysztof & Hulisz, Patryk, 2023. "Application of plasma burners for char combustion in a pulverized coal-fired (PC) boiler – Experimental and numerical analysis," Energy, Elsevier, vol. 279(C).
    13. Castillo Santiago, York & Martínez González, Aldemar & Venturini, Osvaldo J. & Sphaier, Leandro A. & Ocampo Batlle, Eric A., 2022. "Energetic and environmental assessment of oil sludge use in a gasifier/gas microturbine system," Energy, Elsevier, vol. 244(PB).
    14. Adnan, Muflih A. & Hossain, Mohammad M. & Golam Kibria, Md, 2022. "Converting waste into fuel via integrated thermal and electrochemical routes: An analysis of thermodynamic approach on thermal conversion," Applied Energy, Elsevier, vol. 311(C).
    15. Efthymios Rodias & Eirini Aivazidou & Charisios Achillas & Dimitrios Aidonis & Dionysis Bochtis, 2020. "Water-Energy-Nutrients Synergies in the Agrifood Sector: A Circular Economy Framework," Energies, MDPI, vol. 14(1), pages 1-17, December.
    16. W. A. M. A. N. Illankoon & Chiara Milanese & Alessandro Girella & Puhulwella G. Rathnasiri & K. H. M. Sudesh & Maria Medina Llamas & Maria Cristina Collivignarelli & Sabrina Sorlini, 2022. "Agricultural Biomass-Based Power Generation Potential in Sri Lanka: A Techno-Economic Analysis," Energies, MDPI, vol. 15(23), pages 1-18, November.
    17. Aravani, Vasiliki P. & Sun, Hangyu & Yang, Ziyi & Liu, Guangqing & Wang, Wen & Anagnostopoulos, George & Syriopoulos, George & Charisiou, Nikolaos D. & Goula, Maria A. & Kornaros, Michael & Papadakis,, 2022. "Agricultural and livestock sector's residues in Greece & China: Comparative qualitative and quantitative characterization for assessing their potential for biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    18. Chaudhary Awais Salman & Ch Bilal Omer, 2020. "Process Modelling and Simulation of Waste Gasification-Based Flexible Polygeneration Facilities for Power, Heat and Biofuels Production," Energies, MDPI, vol. 13(16), pages 1-22, August.
    19. Murillo Vetroni Barros & Rômulo Henrique Gomes Jesus & Bruno Silva Ribeiro & Cassiano Moro Piekarski, 2023. "Going in Circles: Key Aspects for Circular Economy Contributions to Agro-industrial Cooperatives," Circular Economy and Sustainability, Springer, vol. 3(2), pages 861-880, June.
    20. Ajorloo, Mojtaba & Ghodrat, Maryam & Scott, Jason & Strezov, Vladimir, 2022. "Modelling and statistical analysis of plastic biomass mixture co-gasification," Energy, Elsevier, vol. 256(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:7:p:2006-:d:530465. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.