IDEAS home Printed from https://ideas.repec.org/p/aiz/louvad/2022041.html
   My bibliography  Save this paper

Autocalibration by balance correction in nonlife insurance pricing

Author

Listed:
  • Denuit, Michel

    (Université catholique de Louvain, LIDAM/ISBA, Belgium)

  • Trufin, Julien

    (ULB)

Abstract

By exploiting massive amounts of data, machine learning techniques provide actuaries with predictors exhibiting high correlation with claim frequencies and severities. However, these predictors generally fail to achieve financial equilibrium and thus do not qualify as pure premiums. Autocalibration effectively addresses this issue since it ensures that every group of policyholders paying the same premium is on average self-financing, as demonstrated by Denuit et al. (2021), Ciatto et al. (2022), Lindholm et al. (2022) and Wüthrich (2022). These authors proposed balance correction as a way to make any candidate premium autocalibrated. The present paper further studies the effect of balance correction on resulting pure premiums. It is shown that this method is also beneficial in terms of out-of-sample, or predictive Tweedie deviance, Bregman divergence as well as concentration curves. The paper then derives conditions ensuring that the initial predictor and its balance-corrected version are ordered in Lorenz order. Finally, criteria are proposed to rank the balance-corrected versions of two competing predictors in the convex order.

Suggested Citation

  • Denuit, Michel & Trufin, Julien, 2022. "Autocalibration by balance correction in nonlife insurance pricing," LIDAM Discussion Papers ISBA 2022041, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  • Handle: RePEc:aiz:louvad:2022041
    as

    Download full text from publisher

    File URL: https://dial.uclouvain.be/pr/boreal/en/object/boreal%3A268584/datastream/PDF_01/view
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michel Denuit & Arthur Charpentier & Julien Trufin, 2021. "Autocalibration and Tweedie-dominance for Insurance Pricing with Machine Learning," Papers 2103.03635, arXiv.org, revised Jul 2021.
    2. Gneiting, Tilmann, 2011. "Making and Evaluating Point Forecasts," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 746-762.
    3. Denuit, Michel & Trufin, Julien, 2021. "Lorenz curve, Gini coefficient, and Tweedie dominance for autocalibrated predictors," LIDAM Discussion Papers ISBA 2021036, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
    5. Denuit, Michel & Charpentier, Arthur & Trufin, Julien, 2021. "Autocalibration and Tweedie-dominance for insurance pricing with machine learning," LIDAM Discussion Papers ISBA 2021013, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. Denuit, Michel & Trufin, Julien, 2022. "Model selection with Pearson’s correlation, concentration and Lorenz curves under autocalibration," LIDAM Discussion Papers ISBA 2022033, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Denuit, Michel & Charpentier , Arthur & Trufin, Julien, 2021. "Autocalibration and Tweedie-dominance for insurance pricing with machine learning," LIDAM Reprints ISBA 2021049, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    8. Andrew J. Patton, 2020. "Comparing Possibly Misspecified Forecasts," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(4), pages 796-809, October.
    9. Denuit, Michel, 2010. "Positive dependence of signals," LIDAM Discussion Papers ISBA 2010025, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    10. Denuit, Michel & Sznajder, Dominik & Trufin, Julien, 2019. "Model selection based on Lorenz and concentration curves, Gini indices and convex order," LIDAM Reprints ISBA 2019046, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    11. Denuit, Michel & Charpentier, Arthur & Trufin, Julien, 2021. "Autocalibration and Tweedie-dominance for insurance pricing with machine learning," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 485-497.
    12. Denuit, Michel & Sznajder, Dominik & Trufin, Julien, 2019. "Model selection based on Lorenz and concentration curves, Gini indices and convex order," Insurance: Mathematics and Economics, Elsevier, vol. 89(C), pages 128-139.
    13. Denuit, Michel & Sznajder, Dominik & Trufin, Julien, 2019. "Model selection based on Lorenz and concentration curves, Gini indices and convex order," LIDAM Discussion Papers ISBA 2019006, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    14. Fabian Krüger & Johanna F. Ziegel, 2021. "Generic Conditions for Forecast Dominance," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(4), pages 972-983, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Denuit, Michel & Trufin, Julien & Verdebout, Thomas, 2021. "Testing for more positive expectation dependence with application to model comparison," LIDAM Discussion Papers ISBA 2021021, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Mario V. Wuthrich & Johanna Ziegel, 2023. "Isotonic Recalibration under a Low Signal-to-Noise Ratio," Papers 2301.02692, arXiv.org.
    3. Fissler, Tobias & Merz, Michael & Wüthrich, Mario V., 2023. "Deep quantile and deep composite triplet regression," Insurance: Mathematics and Economics, Elsevier, vol. 109(C), pages 94-112.
    4. Denuit, Michel & Trufin, Julien, 2022. "Model selection with Pearson’s correlation, concentration and Lorenz curves under autocalibration," LIDAM Discussion Papers ISBA 2022033, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Denuit, Michel & Trufin, Julien, 2022. "Tweedie dominance for autocalibrated predictors and Laplace transform order," LIDAM Discussion Papers ISBA 2022040, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. Arthur Charpentier, 2022. "Quantifying fairness and discrimination in predictive models," Papers 2212.09868, arXiv.org.
    7. Yaojun Zhang & Lanpeng Ji & Georgios Aivaliotis & Charles C. Taylor, 2024. "Bayesian CART models for aggregate claim modeling," Papers 2409.01908, arXiv.org.
    8. Denuit, Michel & Trufin, Julien & Verdebout, Thomas, 2021. "Testing for more positive expectation dependence with application to model comparison," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 163-172.
    9. Michel Denuit & Christian Y. Robert, 2021. "Risk sharing under the dominant peer‐to‐peer property and casualty insurance business models," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 24(2), pages 181-205, June.
    10. Denuit, Michel & Charpentier, Arthur & Trufin, Julien, 2021. "Autocalibration and Tweedie-dominance for insurance pricing with machine learning," LIDAM Discussion Papers ISBA 2021013, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    11. Denuit, Michel & Robert, Christian Y., 2021. "Risk sharing under the dominant peer-to-peer property and casualty insurance business models," LIDAM Discussion Papers ISBA 2021001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    12. Michel Denuit & Arthur Charpentier & Julien Trufin, 2021. "Autocalibration and Tweedie-dominance for Insurance Pricing with Machine Learning," Papers 2103.03635, arXiv.org, revised Jul 2021.
    13. Yaojun Zhang & Lanpeng Ji & Georgios Aivaliotis & Charles Taylor, 2023. "Bayesian CART models for insurance claims frequency," Papers 2303.01923, arXiv.org, revised Dec 2023.
    14. Zhang, Yaojun & Ji, Lanpeng & Aivaliotis, Georgios & Taylor, Charles, 2024. "Bayesian CART models for insurance claims frequency," Insurance: Mathematics and Economics, Elsevier, vol. 114(C), pages 108-131.
    15. Shengkun Xie & Kun Shi, 2023. "Generalised Additive Modelling of Auto Insurance Data with Territory Design: A Rate Regulation Perspective," Mathematics, MDPI, vol. 11(2), pages 1-24, January.
    16. Denuit, Michel & Trufin, Julien, 2021. "Lorenz curve, Gini coefficient, and Tweedie dominance for autocalibrated predictors," LIDAM Discussion Papers ISBA 2021036, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    17. Jolien Ponnet & Robin Van Oirbeek & Tim Verdonck, 2021. "Concordance Probability for Insurance Pricing Models," Risks, MDPI, vol. 9(10), pages 1-26, October.
    18. Denuit, Michel & Charpentier, Arthur & Trufin, Julien, 2021. "Autocalibration and Tweedie-dominance for insurance pricing with machine learning," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 485-497.
    19. Mucahit Aygun & Fabio Bellini & Roger J. A. Laeven, 2023. "Elicitability of Return Risk Measures," Papers 2302.13070, arXiv.org, revised Mar 2023.
    20. Wakker, Peter P. & Yang, Jingni, 2021. "Concave/convex weighting and utility functions for risk: A new light on classical theorems," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 429-435.

    More about this item

    Keywords

    Tweedie deviance ; Bregman divergence ; financial equilibrium ; convex order ; Lorenz order;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aiz:louvad:2022041. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nadja Peiffer (email available below). General contact details of provider: https://edirc.repec.org/data/isuclbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.