IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v101y2021ipbp485-497.html
   My bibliography  Save this article

Autocalibration and Tweedie-dominance for insurance pricing with machine learning

Author

Listed:
  • Denuit, Michel
  • Charpentier, Arthur
  • Trufin, Julien

Abstract

Boosting techniques and neural networks are particularly effective machine learning methods for insurance pricing. Often in practice, the sum of fitted values can depart from the observed totals to a large extent. The possible lack of balance when models are trained by minimizing deviance outside the familiar GLM with canonical link setting has been documented in Wüthrich (2019, 2020, 2021). The present paper aims to further study this phenomenon when learning proceeds by minimizing Tweedie deviance. It is shown that minimizing deviance involves a trade-off between the integral of weighted differences of lower partial moments and the bias measured on a specific scale. Hence, there is no guarantee that the sum of fitted values stays close to observed totals if the latter bias term is dominated by the former one entering deviance. Autocalibration is then proposed as a remedy. This new method to correct for bias adds an extra local GLM step to the analysis with the output of the first step as only predictor. Theoretically, it is shown that it implements the autocalibration concept in pure premium calculation and ensures that balance also holds on a local scale, not only at portfolio level as with existing bias-correction techniques.

Suggested Citation

  • Denuit, Michel & Charpentier, Arthur & Trufin, Julien, 2021. "Autocalibration and Tweedie-dominance for insurance pricing with machine learning," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 485-497.
  • Handle: RePEc:eee:insuma:v:101:y:2021:i:pb:p:485-497
    DOI: 10.1016/j.insmatheco.2021.09.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668721001414
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2021.09.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Moshe Shaked & Miguel A. Sordo & Alfonso Suárez-Llorens, 2012. "Global Dependence Stochastic Orders," Methodology and Computing in Applied Probability, Springer, vol. 14(3), pages 617-648, September.
    2. Denuit, Michel & Sznajder, Dominik & Trufin, Julien, 2019. "Model selection based on Lorenz and concentration curves, Gini indices and convex order," Insurance: Mathematics and Economics, Elsevier, vol. 89(C), pages 128-139.
    3. Bailey, Robert A. & Simon, LeRoy J., 1960. "Two Studies in Automobile Insurance Ratemaking," ASTIN Bulletin, Cambridge University Press, vol. 1(4), pages 192-217, December.
    4. Denuit, Michel & Sznajder, Dominik & Trufin, Julien, 2019. "Model selection based on Lorenz and concentration curves, Gini indices and convex order," LIDAM Discussion Papers ISBA 2019006, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Denuit, Michel & Sznajder, Dominik & Trufin, Julien, 2019. "Model selection based on Lorenz and concentration curves, Gini indices and convex order," LIDAM Reprints ISBA 2019046, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yaojun Zhang & Lanpeng Ji & Georgios Aivaliotis & Charles Taylor, 2023. "Bayesian CART models for insurance claims frequency," Papers 2303.01923, arXiv.org, revised Dec 2023.
    2. Fissler, Tobias & Merz, Michael & Wüthrich, Mario V., 2023. "Deep quantile and deep composite triplet regression," Insurance: Mathematics and Economics, Elsevier, vol. 109(C), pages 94-112.
    3. Denuit, Michel & Trufin, Julien, 2022. "Tweedie dominance for autocalibrated predictors and Laplace transform order," LIDAM Discussion Papers ISBA 2022040, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Denuit, Michel & Trufin, Julien, 2022. "Autocalibration by balance correction in nonlife insurance pricing," LIDAM Discussion Papers ISBA 2022041, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Mario V. Wuthrich & Johanna Ziegel, 2023. "Isotonic Recalibration under a Low Signal-to-Noise Ratio," Papers 2301.02692, arXiv.org.
    6. Zhang, Yaojun & Ji, Lanpeng & Aivaliotis, Georgios & Taylor, Charles, 2024. "Bayesian CART models for insurance claims frequency," Insurance: Mathematics and Economics, Elsevier, vol. 114(C), pages 108-131.
    7. Arthur Charpentier, 2022. "Quantifying fairness and discrimination in predictive models," Papers 2212.09868, arXiv.org.
    8. Shengkun Xie & Kun Shi, 2023. "Generalised Additive Modelling of Auto Insurance Data with Territory Design: A Rate Regulation Perspective," Mathematics, MDPI, vol. 11(2), pages 1-24, January.
    9. Denuit, Michel & Trufin, Julien & Verdebout, Thomas, 2021. "Testing for more positive expectation dependence with application to model comparison," LIDAM Discussion Papers ISBA 2021021, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michel Denuit & Arthur Charpentier & Julien Trufin, 2021. "Autocalibration and Tweedie-dominance for Insurance Pricing with Machine Learning," Papers 2103.03635, arXiv.org, revised Jul 2021.
    2. Denuit, Michel & Charpentier, Arthur & Trufin, Julien, 2021. "Autocalibration and Tweedie-dominance for insurance pricing with machine learning," LIDAM Discussion Papers ISBA 2021013, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Jolien Ponnet & Robin Van Oirbeek & Tim Verdonck, 2021. "Concordance Probability for Insurance Pricing Models," Risks, MDPI, vol. 9(10), pages 1-26, October.
    4. Denuit, Michel & Trufin, Julien, 2022. "Autocalibration by balance correction in nonlife insurance pricing," LIDAM Discussion Papers ISBA 2022041, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Michel Denuit & Christian Y. Robert, 2021. "Risk sharing under the dominant peer‐to‐peer property and casualty insurance business models," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 24(2), pages 181-205, June.
    6. Denuit, Michel & Robert, Christian Y., 2021. "Risk sharing under the dominant peer-to-peer property and casualty insurance business models," LIDAM Discussion Papers ISBA 2021001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Denuit, Michel & Trufin, Julien & Verdebout, Thomas, 2021. "Testing for more positive expectation dependence with application to model comparison," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 163-172.
    8. Denuit, Michel & Trufin, Julien, 2022. "Model selection with Pearson’s correlation, concentration and Lorenz curves under autocalibration," LIDAM Discussion Papers ISBA 2022033, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    9. Aktaev, Nurken E. & Bannova, K.A., 2022. "Mathematical modeling of probability distribution of money by means of potential formation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 595(C).
    10. Yves Staudt & Joël Wagner, 2021. "Assessing the Performance of Random Forests for Modeling Claim Severity in Collision Car Insurance," Risks, MDPI, vol. 9(3), pages 1-28, March.
    11. Willame, Gireg & Trufin, Julien & Denuit, Michel, 2023. "Boosted Poisson regression trees: A guide to the BT package in R," LIDAM Discussion Papers ISBA 2023008, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    12. Denuit, Michel & Trufin, Julien, 2021. "Lorenz curve, Gini coefficient, and Tweedie dominance for autocalibrated predictors," LIDAM Discussion Papers ISBA 2021036, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    13. Wakker, Peter P. & Yang, Jingni, 2021. "Concave/convex weighting and utility functions for risk: A new light on classical theorems," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 429-435.
    14. Denuit, Michel & Trufin, Julien & Verdebout, Thomas, 2021. "Testing for more positive expectation dependence with application to model comparison," LIDAM Discussion Papers ISBA 2021021, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    15. Chenglong Ye & Lin Zhang & Mingxuan Han & Yanjia Yu & Bingxin Zhao & Yuhong Yang, 2022. "Combining Predictions of Auto Insurance Claims," Econometrics, MDPI, vol. 10(2), pages 1-15, April.
    16. Brandt, Nikolai & Drees, Burkhard & Eckwert, Bernhard & Várdy, Felix, 2014. "Information and the dispersion of posterior expectations," Journal of Economic Theory, Elsevier, vol. 154(C), pages 604-611.
    17. Yuqing Zhang & Neil Walton, 2019. "Adaptive Pricing in Insurance: Generalized Linear Models and Gaussian Process Regression Approaches," Papers 1907.05381, arXiv.org.
    18. repec:bpj:demode:v:6:y:2018:i:1:p:156-177:n:10 is not listed on IDEAS
    19. William Guevara-Alarc'on & Luz Mery Gonz'alez & Armando Antonio Zarruk, 2017. "The partial damage loss cover ratemaking of the automobile insurance using generalized linear models," Papers 1707.03391, arXiv.org.
    20. Michel Denuit & Mhamed Mesfioui & Julien Trufin, 2019. "Bounds on Concordance-Based Validation Statistics in Regression Models for Binary Responses," Methodology and Computing in Applied Probability, Springer, vol. 21(2), pages 491-509, June.
    21. Zhengmin Duan & Yonglian Chang & Qi Wang & Tianyao Chen & Qing Zhao, 2018. "A Logistic Regression Based Auto Insurance Rate-Making Model Designed for the Insurance Rate Reform," IJFS, MDPI, vol. 6(1), pages 1-16, February.

    More about this item

    Keywords

    Risk classification; Method of marginal totals; Tweedie distribution family; Convex order; Autocalibration;
    All these keywords.

    JEL classification:

    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:101:y:2021:i:pb:p:485-497. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.