IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v89y2019icp128-139.html
   My bibliography  Save this article

Model selection based on Lorenz and concentration curves, Gini indices and convex order

Author

Listed:
  • Denuit, Michel
  • Sznajder, Dominik
  • Trufin, Julien

Abstract

In order to determine an appropriate amount of premium, statistical goodness-of-fit criteria must be supplemented with actuarial ones when assessing performance of a given candidate pure premium. In this paper, concentration curves and Lorenz curves are shown to provide actuaries with effective tools to evaluate whether a premium is appropriate or to compare two competing alternatives. The idea is to compare the premium income for sub-portfolios gathering low risks (identified as low by means of the premiums under consideration) to the true one, or equivalently, to the actual losses. Numerical illustrations performed on hypothetical data and real ones demonstrate the usefulness of the proposed approach.

Suggested Citation

  • Denuit, Michel & Sznajder, Dominik & Trufin, Julien, 2019. "Model selection based on Lorenz and concentration curves, Gini indices and convex order," Insurance: Mathematics and Economics, Elsevier, vol. 89(C), pages 128-139.
  • Handle: RePEc:eee:insuma:v:89:y:2019:i:c:p:128-139
    DOI: 10.1016/j.insmatheco.2019.09.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668719303890
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2019.09.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Frees, Edward W. & Meyers, Glenn & Cummings, A. David, 2011. "Summarizing Insurance Scores Using a Gini Index," Journal of the American Statistical Association, American Statistical Association, vol. 106(495), pages 1085-1098.
    2. Shlomo Yitzhaki, 2003. "Gini’s Mean difference: a superior measure of variability for non-normal distributions," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(2), pages 285-316.
    3. Denuit, Michel M. & Mesfioui, Mhamed, 2017. "Preserving the Rothschild–Stiglitz type increase in risk with background risk: A characterization," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 1-5.
    4. Denuit, Michel & Mesfioui, Mhamed, 2013. "A sufficient condition of crossing type for the bivariate orthant convex order," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 157-162.
    5. Denuit, Michel, 2010. "Positive dependence of signals," LIDAM Discussion Papers ISBA 2010025, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    7. Christian Gouriéroux, 1992. "Courbes de performances, de sélection et de discrimination," Annals of Economics and Statistics, GENES, issue 28, pages 107-123.
    8. Denuit, Michel & Mesfioui, Mhamed, 2013. "A sufficient condition of crossing type for the bivariate orthant convex order," LIDAM Reprints ISBA 2013004, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    9. repec:adr:anecst:y:1992:i:28:p:05 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michel Denuit & Arthur Charpentier & Julien Trufin, 2021. "Autocalibration and Tweedie-dominance for Insurance Pricing with Machine Learning," Papers 2103.03635, arXiv.org, revised Jul 2021.
    2. Yves Staudt & Joël Wagner, 2021. "Assessing the Performance of Random Forests for Modeling Claim Severity in Collision Car Insurance," Risks, MDPI, vol. 9(3), pages 1-28, March.
    3. Aktaev, Nurken E. & Bannova, K.A., 2022. "Mathematical modeling of probability distribution of money by means of potential formation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 595(C).
    4. Denuit, Michel & Trufin, Julien, 2021. "Lorenz curve, Gini coefficient, and Tweedie dominance for autocalibrated predictors," LIDAM Discussion Papers ISBA 2021036, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Michel Denuit & Christian Y. Robert, 2021. "Risk sharing under the dominant peer‐to‐peer property and casualty insurance business models," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 24(2), pages 181-205, June.
    6. Denuit, Michel & Charpentier, Arthur & Trufin, Julien, 2021. "Autocalibration and Tweedie-dominance for insurance pricing with machine learning," LIDAM Discussion Papers ISBA 2021013, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Jolien Ponnet & Robin Van Oirbeek & Tim Verdonck, 2021. "Concordance Probability for Insurance Pricing Models," Risks, MDPI, vol. 9(10), pages 1-26, October.
    8. Denuit, Michel & Trufin, Julien & Verdebout, Thomas, 2021. "Testing for more positive expectation dependence with application to model comparison," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 163-172.
    9. Willame, Gireg & Trufin, Julien & Denuit, Michel, 2023. "Boosted Poisson regression trees: A guide to the BT package in R," LIDAM Discussion Papers ISBA 2023008, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    10. Wakker, Peter P. & Yang, Jingni, 2021. "Concave/convex weighting and utility functions for risk: A new light on classical theorems," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 429-435.
    11. Denuit, Michel & Robert, Christian Y., 2021. "Risk sharing under the dominant peer-to-peer property and casualty insurance business models," LIDAM Discussion Papers ISBA 2021001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    12. Denuit, Michel & Charpentier, Arthur & Trufin, Julien, 2021. "Autocalibration and Tweedie-dominance for insurance pricing with machine learning," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 485-497.
    13. Denuit, Michel & Trufin, Julien, 2022. "Autocalibration by balance correction in nonlife insurance pricing," LIDAM Discussion Papers ISBA 2022041, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    14. Denuit, Michel & Trufin, Julien & Verdebout, Thomas, 2021. "Testing for more positive expectation dependence with application to model comparison," LIDAM Discussion Papers ISBA 2021021, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    15. Denuit, Michel & Trufin, Julien, 2022. "Model selection with Pearson’s correlation, concentration and Lorenz curves under autocalibration," LIDAM Discussion Papers ISBA 2022033, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Denuit, Michel & Sznajder, Dominik & Trufin, Julien, 2019. "Model selection based on Lorenz and concentration curves, Gini indices and convex order," LIDAM Discussion Papers ISBA 2019006, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Denuit, Michel & Trufin, Julien & Verdebout, Thomas, 2021. "Testing for more positive expectation dependence with application to model comparison," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 163-172.
    3. Denuit, Michel & Trufin, Julien & Verdebout, Thomas, 2021. "Testing for more positive expectation dependence with application to model comparison," LIDAM Discussion Papers ISBA 2021021, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Moshe Shaked & Miguel A. Sordo & Alfonso Suárez-Llorens, 2012. "Global Dependence Stochastic Orders," Methodology and Computing in Applied Probability, Springer, vol. 14(3), pages 617-648, September.
    5. J. M. Fernández-Ponce & M. R. Rodríguez-Griñolo, 2017. "New properties of the orthant convex-type stochastic orders," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(3), pages 618-637, September.
    6. Bernard Carole & Müller Alfred, 2020. "Dependence uncertainty bounds for the energy score and the multivariate Gini mean difference," Dependence Modeling, De Gruyter, vol. 8(1), pages 239-253, January.
    7. Bernard Carole & Müller Alfred, 2020. "Dependence uncertainty bounds for the energy score and the multivariate Gini mean difference," Dependence Modeling, De Gruyter, vol. 8(1), pages 239-253, January.
    8. Azar, Pablo D. & Micali, Silvio, 2018. "Computational principal agent problems," Theoretical Economics, Econometric Society, vol. 13(2), May.
    9. Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2023. "Large Time‐Varying Volatility Models for Hourly Electricity Prices," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 545-573, June.
    10. Tobias Fissler & Yannick Hoga, 2024. "How to Compare Copula Forecasts?," Papers 2410.04165, arXiv.org.
    11. Davide Pettenuzzo & Francesco Ravazzolo, 2016. "Optimal Portfolio Choice Under Decision‐Based Model Combinations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1312-1332, November.
    12. Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.
    13. Hwang, Eunju, 2022. "Prediction intervals of the COVID-19 cases by HAR models with growth rates and vaccination rates in top eight affected countries: Bootstrap improvement," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    14. R de Fondeville & A C Davison, 2018. "High-dimensional peaks-over-threshold inference," Biometrika, Biometrika Trust, vol. 105(3), pages 575-592.
    15. Armantier, Olivier & Treich, Nicolas, 2013. "Eliciting beliefs: Proper scoring rules, incentives, stakes and hedging," European Economic Review, Elsevier, vol. 62(C), pages 17-40.
    16. Domenico Piccolo & Rosaria Simone, 2019. "The class of cub models: statistical foundations, inferential issues and empirical evidence," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(3), pages 389-435, September.
    17. Finn Lindgren, 2015. "Comments on: Comparing and selecting spatial predictors using local criteria," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(1), pages 35-44, March.
    18. Plischke, Elmar & Borgonovo, Emanuele, 2019. "Copula theory and probabilistic sensitivity analysis: Is there a connection?," European Journal of Operational Research, Elsevier, vol. 277(3), pages 1046-1059.
    19. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    20. Charles Condevaux & Stéphane Mussard & Téa Ouraga & Guillaume Zambrano, 2020. "Generalized Gini linear and quadratic discriminant analyses," METRON, Springer;Sapienza Università di Roma, vol. 78(2), pages 219-236, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:89:y:2019:i:c:p:128-139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.