IDEAS home Printed from https://ideas.repec.org/p/aiz/louvad/2021036.html
   My bibliography  Save this paper

Lorenz curve, Gini coefficient, and Tweedie dominance for autocalibrated predictors

Author

Listed:
  • Denuit, Michel

    (Université catholique de Louvain, LIDAM/ISBA, Belgium)

  • Trufin, Julien

    (Université Libre de Bruxelles)

Abstract

Denuit et al. (2019, 2021a, 2021b) proposed diagnostic tools based on concentration curves and associated metrics (ICC and ABC), as well as Tweedie dominance to compare competing models. This is in contrast with professional practice which generally resorts to Lorenz curves and Gini coefficients for that purpose. This note reconciles both approaches for autocalibrated predictors. Autocalibration is a desirable property, intimately related to the method of marginal totals that predates modern risk classification methods. It can easily be implemented using the practical method proposed by Denuit et al. (2021a), consisting in an extra local regression step. Under autocalibration, it is shown that Lorenz curve and concentration curve coincide, that ICC is equivalent to Gini coefficient, and that ABC is zero. The latter property thus offers an easy check for autocalibration.

Suggested Citation

  • Denuit, Michel & Trufin, Julien, 2021. "Lorenz curve, Gini coefficient, and Tweedie dominance for autocalibrated predictors," LIDAM Discussion Papers ISBA 2021036, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  • Handle: RePEc:aiz:louvad:2021036
    as

    Download full text from publisher

    File URL: https://dial.uclouvain.be/pr/boreal/en/object/boreal%3A254535/datastream/PDF_01/view
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Denuit, Michel & Sznajder, Dominik & Trufin, Julien, 2019. "Model selection based on Lorenz and concentration curves, Gini indices and convex order," LIDAM Reprints ISBA 2019046, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Denuit, Michel & Sznajder, Dominik & Trufin, Julien, 2019. "Model selection based on Lorenz and concentration curves, Gini indices and convex order," Insurance: Mathematics and Economics, Elsevier, vol. 89(C), pages 128-139.
    3. Denuit, Michel & Sznajder, Dominik & Trufin, Julien, 2019. "Model selection based on Lorenz and concentration curves, Gini indices and convex order," LIDAM Discussion Papers ISBA 2019006, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Denuit, Michel & Trufin, Julien, 2022. "Model selection with Pearson’s correlation, concentration and Lorenz curves under autocalibration," LIDAM Discussion Papers ISBA 2022033, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Denuit, Michel & Trufin, Julien, 2022. "Autocalibration by balance correction in nonlife insurance pricing," LIDAM Discussion Papers ISBA 2022041, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jolien Ponnet & Robin Van Oirbeek & Tim Verdonck, 2021. "Concordance Probability for Insurance Pricing Models," Risks, MDPI, vol. 9(10), pages 1-26, October.
    2. Denuit, Michel & Charpentier, Arthur & Trufin, Julien, 2021. "Autocalibration and Tweedie-dominance for insurance pricing with machine learning," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 485-497.
    3. Denuit, Michel & Trufin, Julien, 2022. "Autocalibration by balance correction in nonlife insurance pricing," LIDAM Discussion Papers ISBA 2022041, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Denuit, Michel & Trufin, Julien & Verdebout, Thomas, 2021. "Testing for more positive expectation dependence with application to model comparison," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 163-172.
    5. Wakker, Peter P. & Yang, Jingni, 2021. "Concave/convex weighting and utility functions for risk: A new light on classical theorems," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 429-435.
    6. Aktaev, Nurken E. & Bannova, K.A., 2022. "Mathematical modeling of probability distribution of money by means of potential formation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 595(C).
    7. Michel Denuit & Christian Y. Robert, 2021. "Risk sharing under the dominant peer‐to‐peer property and casualty insurance business models," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 24(2), pages 181-205, June.
    8. Denuit, Michel & Charpentier, Arthur & Trufin, Julien, 2021. "Autocalibration and Tweedie-dominance for insurance pricing with machine learning," LIDAM Discussion Papers ISBA 2021013, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    9. Denuit, Michel & Robert, Christian Y., 2021. "Risk sharing under the dominant peer-to-peer property and casualty insurance business models," LIDAM Discussion Papers ISBA 2021001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    10. Yves Staudt & Joël Wagner, 2021. "Assessing the Performance of Random Forests for Modeling Claim Severity in Collision Car Insurance," Risks, MDPI, vol. 9(3), pages 1-28, March.
    11. Michel Denuit & Arthur Charpentier & Julien Trufin, 2021. "Autocalibration and Tweedie-dominance for Insurance Pricing with Machine Learning," Papers 2103.03635, arXiv.org, revised Jul 2021.
    12. Willame, Gireg & Trufin, Julien & Denuit, Michel, 2023. "Boosted Poisson regression trees: A guide to the BT package in R," LIDAM Discussion Papers ISBA 2023008, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    13. Denuit, Michel & Trufin, Julien & Verdebout, Thomas, 2021. "Testing for more positive expectation dependence with application to model comparison," LIDAM Discussion Papers ISBA 2021021, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    14. Denuit, Michel & Trufin, Julien, 2022. "Model selection with Pearson’s correlation, concentration and Lorenz curves under autocalibration," LIDAM Discussion Papers ISBA 2022033, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    15. Denuit, Michel & Huyghe, Julie & Trufin, Julien & Verdebout, Thomas, 2024. "Testing for auto-calibration with Lorenz and Concentration curves," Insurance: Mathematics and Economics, Elsevier, vol. 117(C), pages 130-139.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aiz:louvad:2021036. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nadja Peiffer (email available below). General contact details of provider: https://edirc.repec.org/data/isuclbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.