IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v118y2024icp123-128.html
   My bibliography  Save this article

Convex and Lorenz orders under balance correction in nonlife insurance pricing: Review and new developments

Author

Listed:
  • Denuit, Michel
  • Trufin, Julien

Abstract

By exploiting massive amounts of data, machine learning techniques provide actuaries with predictors exhibiting high correlation with claim frequencies and severities. However, these predictors generally fail to achieve financial equilibrium and thus do not qualify as pure premiums. Autocalibration effectively addresses this issue since it ensures that every group of policyholders paying the same premium is on average self-financing. Balance correction has been proposed as a way to make any candidate premium autocalibrated with the added advantage that it improves out-of-sample Bregman divergence and hence predictive Tweedie deviance. This paper proves that balance correction is also beneficial in terms of concentration curves and derives conditions ensuring that the initial predictor and its balance-corrected version are ordered in Lorenz order. Finally, criteria are proposed to rank the balance-corrected versions of two competing predictors in the convex order.

Suggested Citation

  • Denuit, Michel & Trufin, Julien, 2024. "Convex and Lorenz orders under balance correction in nonlife insurance pricing: Review and new developments," Insurance: Mathematics and Economics, Elsevier, vol. 118(C), pages 123-128.
  • Handle: RePEc:eee:insuma:v:118:y:2024:i:c:p:123-128
    DOI: 10.1016/j.insmatheco.2024.06.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668724000738
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2024.06.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michel Denuit & Arthur Charpentier & Julien Trufin, 2021. "Autocalibration and Tweedie-dominance for Insurance Pricing with Machine Learning," Papers 2103.03635, arXiv.org, revised Jul 2021.
    2. Gneiting, Tilmann, 2011. "Making and Evaluating Point Forecasts," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 746-762.
    3. Denuit, Michel & Charpentier, Arthur & Trufin, Julien, 2021. "Autocalibration and Tweedie-dominance for insurance pricing with machine learning," LIDAM Discussion Papers ISBA 2021013, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Denuit, Michel & Charpentier, Arthur & Trufin, Julien, 2021. "Autocalibration and Tweedie-dominance for insurance pricing with machine learning," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 485-497.
    5. Mario V. Wuthrich & Johanna Ziegel, 2023. "Isotonic Recalibration under a Low Signal-to-Noise Ratio," Papers 2301.02692, arXiv.org.
    6. Denuit, Michel & Charpentier , Arthur & Trufin, Julien, 2021. "Autocalibration and Tweedie-dominance for insurance pricing with machine learning," LIDAM Reprints ISBA 2021049, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Andrew J. Patton, 2020. "Comparing Possibly Misspecified Forecasts," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(4), pages 796-809, October.
    8. Fabian Krüger & Johanna F. Ziegel, 2021. "Generic Conditions for Forecast Dominance," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(4), pages 972-983, October.
    9. Denuit, Michel & Trufin, Julien, 2021. "Lorenz curve, Gini coefficient, and Tweedie dominance for autocalibrated predictors," LIDAM Discussion Papers ISBA 2021036, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    10. M. Lindholm & F. Lindskog & J. Palmquist, 2023. "Local bias adjustment, duration-weighted probabilities, and automatic construction of tariff cells," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2023(10), pages 946-973, November.
    11. Denuit, Michel, 2010. "Positive dependence of signals," LIDAM Discussion Papers ISBA 2010025, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    12. Denuit, Michel & Trufin, Julien, 2023. "Model selection with Pearson’s correlation, concentration and Lorenz curves under autocalibration," LIDAM Reprints ISBA 2023025, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    13. Denuit, Michel & Sznajder, Dominik & Trufin, Julien, 2019. "Model selection based on Lorenz and concentration curves, Gini indices and convex order," LIDAM Discussion Papers ISBA 2019006, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    14. Denuit, Michel & Sznajder, Dominik & Trufin, Julien, 2019. "Model selection based on Lorenz and concentration curves, Gini indices and convex order," LIDAM Reprints ISBA 2019046, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    15. Ciatto, Nicolas & Verelst, Harrison & Trufin, Julien & Denuit, Michel, 2023. "Does autocalibration improve goodness of lift?," LIDAM Reprints ISBA 2023007, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Denuit, Michel & Trufin, Julien, 2022. "Autocalibration by balance correction in nonlife insurance pricing," LIDAM Discussion Papers ISBA 2022041, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Denuit, Michel & Huyghe, Julie & Trufin, Julien & Verdebout, Thomas, 2024. "Testing for auto-calibration with Lorenz and Concentration curves," Insurance: Mathematics and Economics, Elsevier, vol. 117(C), pages 130-139.
    3. Denuit, Michel & Trufin, Julien & Verdebout, Thomas, 2021. "Testing for more positive expectation dependence with application to model comparison," LIDAM Discussion Papers ISBA 2021021, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Mario V. Wuthrich & Johanna Ziegel, 2023. "Isotonic Recalibration under a Low Signal-to-Noise Ratio," Papers 2301.02692, arXiv.org.
    5. Fissler, Tobias & Merz, Michael & Wüthrich, Mario V., 2023. "Deep quantile and deep composite triplet regression," Insurance: Mathematics and Economics, Elsevier, vol. 109(C), pages 94-112.
    6. Denuit, Michel & Trufin, Julien, 2022. "Tweedie dominance for autocalibrated predictors and Laplace transform order," LIDAM Discussion Papers ISBA 2022040, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Arthur Charpentier, 2022. "Quantifying fairness and discrimination in predictive models," Papers 2212.09868, arXiv.org.
    8. Denuit, Michel & Trufin, Julien, 2022. "Model selection with Pearson’s correlation, concentration and Lorenz curves under autocalibration," LIDAM Discussion Papers ISBA 2022033, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    9. Yaojun Zhang & Lanpeng Ji & Georgios Aivaliotis & Charles Taylor, 2023. "Bayesian CART models for insurance claims frequency," Papers 2303.01923, arXiv.org, revised Dec 2023.
    10. Yaojun Zhang & Lanpeng Ji & Georgios Aivaliotis & Charles C. Taylor, 2024. "Bayesian CART models for aggregate claim modeling," Papers 2409.01908, arXiv.org.
    11. Zhang, Yaojun & Ji, Lanpeng & Aivaliotis, Georgios & Taylor, Charles, 2024. "Bayesian CART models for insurance claims frequency," Insurance: Mathematics and Economics, Elsevier, vol. 114(C), pages 108-131.
    12. Shengkun Xie & Kun Shi, 2023. "Generalised Additive Modelling of Auto Insurance Data with Territory Design: A Rate Regulation Perspective," Mathematics, MDPI, vol. 11(2), pages 1-24, January.
    13. Michel Denuit & Christian Y. Robert, 2021. "Risk sharing under the dominant peer‐to‐peer property and casualty insurance business models," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 24(2), pages 181-205, June.
    14. Denuit, Michel & Robert, Christian Y., 2021. "Risk sharing under the dominant peer-to-peer property and casualty insurance business models," LIDAM Discussion Papers ISBA 2021001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    15. Denuit, Michel & Trufin, Julien & Verdebout, Thomas, 2021. "Testing for more positive expectation dependence with application to model comparison," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 163-172.
    16. Denuit, Michel & Charpentier, Arthur & Trufin, Julien, 2021. "Autocalibration and Tweedie-dominance for insurance pricing with machine learning," LIDAM Discussion Papers ISBA 2021013, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    17. Michel Denuit & Arthur Charpentier & Julien Trufin, 2021. "Autocalibration and Tweedie-dominance for Insurance Pricing with Machine Learning," Papers 2103.03635, arXiv.org, revised Jul 2021.
    18. Tobias Fissler & Yannick Hoga, 2024. "How to Compare Copula Forecasts?," Papers 2410.04165, arXiv.org.
    19. Tobias Fissler & Silvana M. Pesenti, 2022. "Sensitivity Measures Based on Scoring Functions," Papers 2203.00460, arXiv.org, revised Jul 2022.
    20. Jolien Ponnet & Robin Van Oirbeek & Tim Verdonck, 2021. "Concordance Probability for Insurance Pricing Models," Risks, MDPI, vol. 9(10), pages 1-26, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:118:y:2024:i:c:p:123-128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.