IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v8y2020i1p10-d314175.html
   My bibliography  Save this article

Modelling Unobserved Heterogeneity in Claim Counts Using Finite Mixture Models

Author

Listed:
  • Lluís Bermúdez

    (Departament de Matemàtica Econòmica, Financera i Actuarial, Universitat de Barcelona, Diagonal 690, 08034 Barcelona, Spain)

  • Dimitris Karlis

    (Department of Statistics, Athens University of Economics and Business, 10434 Athens, Greece)

  • Isabel Morillo

    (Departament de Matemàtica Econòmica, Financera i Actuarial, Universitat de Barcelona, Diagonal 690, 08034 Barcelona, Spain)

Abstract

When modelling insurance claim count data, the actuary often observes overdispersion and an excess of zeros that may be caused by unobserved heterogeneity. A common approach to accounting for overdispersion is to consider models with some overdispersed distribution as opposed to Poisson models. Zero-inflated, hurdle and compound frequency models are typically applied to insurance data to account for such a feature of the data. However, a natural way to deal with unobserved heterogeneity is to consider mixtures of a simpler models. In this paper, we consider k -finite mixtures of some typical regression models. This approach has interesting features: first, it allows for overdispersion and the zero-inflated model represents a special case, and second, it allows for an elegant interpretation based on the typical clustering application of finite mixture models. k -finite mixture models are applied to a car insurance claim dataset in order to analyse whether the problem of unobserved heterogeneity requires a richer structure for risk classification. Our results show that the data consist of two subpopulations for which the regression structure is different.

Suggested Citation

  • Lluís Bermúdez & Dimitris Karlis & Isabel Morillo, 2020. "Modelling Unobserved Heterogeneity in Claim Counts Using Finite Mixture Models," Risks, MDPI, vol. 8(1), pages 1-13, January.
  • Handle: RePEc:gam:jrisks:v:8:y:2020:i:1:p:10-:d:314175
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/8/1/10/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/8/1/10/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dionne, Georges & Vanasse, Charles, 1989. "A Generalization of Automobile Insurance Rating Models: The Negative Binomial Distribution with a Regression Component," ASTIN Bulletin, Cambridge University Press, vol. 19(2), pages 199-212, November.
    2. N. E. Breslow, 1984. "Extra‐Poisson Variation in Log‐Linear Models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 33(1), pages 38-44, March.
    3. Mullahy, John, 1986. "Specification and testing of some modified count data models," Journal of Econometrics, Elsevier, vol. 33(3), pages 341-365, December.
    4. Rainer Winkelmann, 2008. "Econometric Analysis of Count Data," Springer Books, Springer, edition 0, number 978-3-540-78389-3, October.
    5. Dionne, G & Vanasse, C, 1992. "Automobile Insurance Ratemaking in the Presence of Asymmetrical Information," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 7(2), pages 149-165, April-Jun.
    6. Jean-Philippe Boucher & Michel Denuit & Montserrat Guillén, 2007. "Risk Classification for Claim Counts," North American Actuarial Journal, Taylor & Francis Journals, vol. 11(4), pages 110-131.
    7. Murray Aitkin, 1999. "A General Maximum Likelihood Analysis of Variance Components in Generalized Linear Models," Biometrics, The International Biometric Society, vol. 55(1), pages 117-128, March.
    8. Papastamoulis, Panagiotis & Martin-Magniette, Marie-Laure & Maugis-Rabusseau, Cathy, 2016. "On the estimation of mixtures of Poisson regression models with large number of components," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 97-106.
    9. Jean‐Philippe Boucher & Michel Denuit & Montserrat Guillen, 2009. "Number of Accidents or Number of Claims? An Approach with Zero‐Inflated Poisson Models for Panel Data," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 76(4), pages 821-846, December.
    10. Bolancé, Catalina & Guillén, Montserrat & Pinquet, Jean, 2008. "On the link between credibility and frequency premium," Insurance: Mathematics and Economics, Elsevier, vol. 43(2), pages 209-213, October.
    11. Bolance, Catalina & Guillen, Montserrat & Pinquet, Jean, 2003. "Time-varying credibility for frequency risk models: estimation and tests for autoregressive specifications on the random effects," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 273-282, October.
    12. Grün, Bettina & Leisch, Friedrich, 2008. "FlexMix Version 2: Finite Mixtures with Concomitant Variables and Varying and Constant Parameters," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 28(i04).
    13. Bermúdez, Lluís & Karlis, Dimitris, 2012. "A finite mixture of bivariate Poisson regression models with an application to insurance ratemaking," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 3988-3999.
    14. Natacha Brouhns & Montserrat Guillén & Michel Denuit & Jean Pinquet, 2003. "Bonus‐Malus Scales in Segmented Tariffs With Stochastic Migration Between Segments," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 70(4), pages 577-599, December.
    15. Grun, Bettina & Leisch, Friedrich, 2007. "Fitting finite mixtures of generalized linear regressions in R," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5247-5252, July.
    16. Boucher, Jean-Philippe & Denuit, Michel, 2008. "Credibility premiums for the zero-inflated Poisson model and new hunger for bonus interpretation," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 727-735, April.
    17. Montserrat Guillen & Jens Perch Nielsen & Mercedes Ayuso & Ana M. Pérez‐Marín, 2019. "The Use of Telematics Devices to Improve Automobile Insurance Rates," Risk Analysis, John Wiley & Sons, vol. 39(3), pages 662-672, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vali Asimit & Ioannis Kyriakou & Jens Perch Nielsen, 2020. "Special Issue “Machine Learning in Insurance”," Risks, MDPI, vol. 8(2), pages 1-2, May.
    2. Despoina Makariou & Pauline Barrieu & George Tzougas, 2021. "A Finite Mixture Modelling Perspective for Combining Experts’ Opinions with an Application to Quantile-Based Risk Measures," Risks, MDPI, vol. 9(6), pages 1-25, June.
    3. Jennifer S. K. Chan & S. T. Boris Choy & Udi Makov & Ariel Shamir & Vered Shapovalov, 2022. "Variable Selection Algorithm for a Mixture of Poisson Regression for Handling Overdispersion in Claims Frequency Modeling Using Telematics Car Driving Data," Risks, MDPI, vol. 10(4), pages 1-10, April.
    4. Aristodemos Pnevmatikakis & Stathis Kanavos & George Matikas & Konstantina Kostopoulou & Alfredo Cesario & Sofoklis Kyriazakos, 2021. "Risk Assessment for Personalized Health Insurance Based on Real-World Data," Risks, MDPI, vol. 9(3), pages 1-15, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bermúdez, Lluís & Karlis, Dimitris, 2012. "A finite mixture of bivariate Poisson regression models with an application to insurance ratemaking," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 3988-3999.
    2. Payandeh Najafabadi Amir T. & MohammadPour Saeed, 2018. "A k-Inflated Negative Binomial Mixture Regression Model: Application to Rate–Making Systems," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 12(2), pages 1-31, July.
    3. Bermúdez, Lluís & Karlis, Dimitris, 2011. "Bayesian multivariate Poisson models for insurance ratemaking," Insurance: Mathematics and Economics, Elsevier, vol. 48(2), pages 226-236, March.
    4. Mihaela DAVID, 2014. "Modeling The Frequency Of Claims In Auto Insurance With Application To A French Case," Review of Economic and Business Studies, Alexandru Ioan Cuza University, Faculty of Economics and Business Administration, issue 13, pages 69-85, June.
    5. Jean‐Philippe Boucher & Michel Denuit & Montserrat Guillen, 2009. "Number of Accidents or Number of Claims? An Approach with Zero‐Inflated Poisson Models for Panel Data," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 76(4), pages 821-846, December.
    6. Tzougas, George & Pignatelli di Cerchiara, Alice, 2021. "The multivariate mixed Negative Binomial regression model with an application to insurance a posteriori ratemaking," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 602-625.
    7. Yang Lu, 2018. "Dynamic Frailty Count Process in Insurance: A Unified Framework for Estimation, Pricing, and Forecasting," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 85(4), pages 1083-1102, December.
    8. Bermúdez i Morata, Lluís, 2009. "A priori ratemaking using bivariate Poisson regression models," Insurance: Mathematics and Economics, Elsevier, vol. 44(1), pages 135-141, February.
    9. Tzougas, George & Hoon, W. L. & Lim, J. M., 2019. "The negative binomial-inverse Gaussian regression model with an application to insurance ratemaking," LSE Research Online Documents on Economics 101728, London School of Economics and Political Science, LSE Library.
    10. Tan, Chong It, 2016. "Varying transition rules in bonus–malus systems: From rules specification to determination of optimal relativities," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 134-140.
    11. George Tzougas, 2020. "EM Estimation for the Poisson-Inverse Gamma Regression Model with Varying Dispersion: An Application to Insurance Ratemaking," Risks, MDPI, vol. 8(3), pages 1-23, September.
    12. Tzougas, George, 2020. "EM estimation for the Poisson-Inverse Gamma regression model with varying dispersion: an application to insurance ratemaking," LSE Research Online Documents on Economics 106539, London School of Economics and Political Science, LSE Library.
    13. Tzougas, George & Karlis, Dimitris & Frangos, Nicholas, 2017. "Confidence intervals of the premiums of optimal Bonus Malus Systems," LSE Research Online Documents on Economics 70926, London School of Economics and Political Science, LSE Library.
    14. Ramon Alemany & Catalina Bolancé & Roberto Rodrigo & Raluca Vernic, 2020. "Bivariate Mixed Poisson and Normal Generalised Linear Models with Sarmanov Dependence—An Application to Model Claim Frequency and Optimal Transformed Average Severity," Mathematics, MDPI, vol. 9(1), pages 1-18, December.
    15. Bolancé, Catalina & Guillén, Montserrat & Pinquet, Jean, 2008. "On the link between credibility and frequency premium," Insurance: Mathematics and Economics, Elsevier, vol. 43(2), pages 209-213, October.
    16. Gning, Lucien & Diagne, M.L. & Tchuenche, J.M., 2023. "Hierarchical generalized linear models, correlation and a posteriori ratemaking," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 614(C).
    17. Dionne, Georges & Michaud, Pierre-Carl & Pinquet, Jean, 2013. "A review of recent theoretical and empirical analyses of asymmetric information in road safety and automobile insurance," Research in Transportation Economics, Elsevier, vol. 43(1), pages 85-97.
    18. Zhao, Xiaobing & Zhou, Xian, 2012. "Copula models for insurance claim numbers with excess zeros and time-dependence," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 191-199.
    19. Lluis Bermúdez i Morata, 2008. "A priori ratemaking using bivariate poisson regression models," Working Papers XREAP2008-09, Xarxa de Referència en Economia Aplicada (XREAP), revised Jul 2008.
    20. Jean Pinquet, 2012. "Experience rating in non-life insurance," Working Papers hal-00677100, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:8:y:2020:i:1:p:10-:d:314175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.