IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i2p460-d1036531.html
   My bibliography  Save this article

The Extended Exponential-Weibull Accelerated Failure Time Model with Application to Sudan COVID-19 Data

Author

Listed:
  • Adam Braima S. Mastor

    (Department of Mathematics (Statistics Option) Programme, Pan African University, Institute for Basic Sciences, Technology and Innovation (PAUSTI), Nairobi P.O. Box 62000-00200, Kenya)

  • Abdulaziz S. Alghamdi

    (Department of Mathematics, College of Science & Arts, King Abdulaziz University, P.O. Box 344, Rabigh 21911, Saudi Arabia)

  • Oscar Ngesa

    (Department of Mathematics and Physical Sciences, Taita Taveta University, Voi P.O. Box 635-80300, Kenya)

  • Joseph Mung’atu

    (Department of Mathematics, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Juja P.O. Box 62000-00200, Kenya)

  • Christophe Chesneau

    (Department of Mathematics, LMNO, CNRS-Université de Caen, Campus II, Science 3, 14032 Caen, France)

  • Ahmed Z. Afify

    (Department of Statistics, Mathematics and Insurance, Benha University, Benha 13511, Egypt)

Abstract

A fully parametric accelerated failure time (AFT) model with a flexible, novel modified exponential Weibull baseline distribution called the extended exponential Weibull accelerated failure time (ExEW-AFT) model is proposed. The model is presented using the multi-parameter survival regression model, where more than one distributional parameter is linked to the covariates. The model formulation, probabilistic functions, and some of its sub-models were derived. The parameters of the introduced model are estimated using the maximum likelihood approach. An extensive simulation study is used to assess the estimates’ performance using different scenarios based on the baseline hazard shape. The proposed model is applied to a real-life right-censored COVID-19 data set from Sudan to illustrate the practical applicability of the proposed AFT model.

Suggested Citation

  • Adam Braima S. Mastor & Abdulaziz S. Alghamdi & Oscar Ngesa & Joseph Mung’atu & Christophe Chesneau & Ahmed Z. Afify, 2023. "The Extended Exponential-Weibull Accelerated Failure Time Model with Application to Sudan COVID-19 Data," Mathematics, MDPI, vol. 11(2), pages 1-26, January.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:2:p:460-:d:1036531
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/2/460/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/2/460/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Leemis, Lawrence M. & Shih, Li-Hsing & Reynertson, Kurt, 1990. "Variate generation for accelerated life and proportional hazards models with time dependent covariates," Statistics & Probability Letters, Elsevier, vol. 10(4), pages 335-339, September.
    2. Kevin Burke & M. C. Jones & Angela Noufaily, 2020. "A flexible parametric modelling framework for survival analysis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(2), pages 429-457, April.
    3. Legrand, Catherine, 2021. "Advanced Survival Models," LIDAM Reprints ISBA 2021015, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Shahedul A. Khan, 2018. "Exponentiated Weibull regression for time-to-event data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(2), pages 328-354, April.
    5. Kevin Burke & Frank Eriksson & C. B. Pipper, 2020. "Semiparametric multiparameter regression survival modeling," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(2), pages 555-571, June.
    6. Lawrence M. Leemis, 1987. "Technical Note—Variate Generation for Accelerated Life and Proportional Hazards Models," Operations Research, INFORMS, vol. 35(6), pages 892-894, December.
    7. Shahedul A. Khan & Nyla Basharat, 2022. "Accelerated failure time models for recurrent event data analysis and joint modeling," Computational Statistics, Springer, vol. 37(4), pages 1569-1597, September.
    8. Sanjoy K. Sinha, 2019. "Robust estimation in accelerated failure time models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(1), pages 52-78, January.
    9. Gabriela M. Rodrigues & Edwin M. M. Ortega & Gauss M. Cordeiro & Roberto Vila, 2022. "An Extended Weibull Regression for Censored Data: Application for COVID-19 in Campinas, Brazil," Mathematics, MDPI, vol. 10(19), pages 1-17, October.
    10. Shahedul A. Khan & Saima K. Khosa, 2016. "Generalized log-logistic proportional hazard model with applications in survival analysis," Journal of Statistical Distributions and Applications, Springer, vol. 3(1), pages 1-18, December.
    11. Abdisalam Hassan Muse & Samuel Mwalili & Oscar Ngesa & Christophe Chesneau & Afrah Al-Bossly & Mahmoud El-Morshedy, 2022. "Bayesian and Frequentist Approaches for a Tractable Parametric General Class of Hazard-Based Regression Models: An Application to Oncology Data," Mathematics, MDPI, vol. 10(20), pages 1-41, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Broderick Oluyede & Thatayaone Moakofi, 2023. "The Gamma-Topp-Leone-Type II-Exponentiated Half Logistic-G Family of Distributions with Applications," Stats, MDPI, vol. 6(2), pages 1-28, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdisalam Hassan Muse & Samuel Mwalili & Oscar Ngesa & Christophe Chesneau & Afrah Al-Bossly & Mahmoud El-Morshedy, 2022. "Bayesian and Frequentist Approaches for a Tractable Parametric General Class of Hazard-Based Regression Models: An Application to Oncology Data," Mathematics, MDPI, vol. 10(20), pages 1-41, October.
    2. R. Guo & C. E. Love, 1994. "Simulating nonhomogeneous poisson processes with proportional intensities," Naval Research Logistics (NRL), John Wiley & Sons, vol. 41(4), pages 507-522, June.
    3. Yunda Huang & Yuanyuan Zhang & Zong Zhang & Peter B. Gilbert, 2020. "Generating Survival Times Using Cox Proportional Hazards Models with Cyclic and Piecewise Time-Varying Covariates," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(3), pages 324-339, December.
    4. Vincent Abiodun Michael & Ismaila Adewale Bolarinwa, 2020. "Parametric Survival Modeling of Tuberculosis Data- A Case Study of Federal Medical Centre, Bida, Nigeria," Modern Applied Science, Canadian Center of Science and Education, vol. 14(7), pages 1-37, July.
    5. Jolien Ponnet & Robin Van Oirbeek & Tim Verdonck, 2021. "Concordance Probability for Insurance Pricing Models," Risks, MDPI, vol. 9(10), pages 1-26, October.
    6. Jie Min & Yili Hong & Caleb B. King & William Q. Meeker, 2022. "Reliability analysis of artificial intelligence systems using recurrent events data from autonomous vehicles," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(4), pages 987-1013, August.
    7. Xinyu Tang & Abdus S. Wahed, 2011. "Comparison of treatment regimes with adjustment for auxiliary variables," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(12), pages 2925-2938, March.
    8. Jad Beyhum & Ingrid Keilegom, 2023. "Robust censored regression with $$\ell _1$$ ℓ 1 -norm regularization," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 146-162, March.
    9. Shakhawat Hossain & Shahedul A. Khan, 2020. "Shrinkage estimation of the exponentiated Weibull regression model for time‐to‐event data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 74(4), pages 592-610, November.
    10. Anaya-Izquierdo, Karim & Jones, M.C. & Davis, Alice, 2021. "A family of cumulative hazard functions and their frailty connections," Statistics & Probability Letters, Elsevier, vol. 172(C).
    11. Janette Larney & James Samuel Allison & Gerrit Lodewicus Grobler & Marius Smuts, 2023. "Modelling the Time to Write-Off of Non-Performing Loans Using a Promotion Time Cure Model with Parametric Frailty," Mathematics, MDPI, vol. 11(10), pages 1-17, May.
    12. Muschinski, Thomas & Mayr, Georg J. & Simon, Thorsten & Umlauf, Nikolaus & Zeileis, Achim, 2024. "Cholesky-based multivariate Gaussian regression," Econometrics and Statistics, Elsevier, vol. 29(C), pages 261-281.
    13. Linden, Mikael, 2024. "Optimal Retirement Age: Death Hazard Rate Approach," MPRA Paper 120786, University Library of Munich, Germany.
    14. Tshilidzi Benedicta Mulaudzi & Yehenew Getachew Kifle & Roel Braekers, 2023. "A Shared Frailty Model for Left-Truncated and Right-Censored Under-Five Child Mortality Data in South Africa," Stats, MDPI, vol. 6(4), pages 1-11, October.
    15. Efromovich, Sam & Fuksman, Lirit, 2024. "Study of imputation procedures for nonparametric density estimation based on missing censored lifetimes," Computational Statistics & Data Analysis, Elsevier, vol. 198(C).
    16. Mansi Sharma & Steven Stern, 2024. "Generalized Weibull Distributions," Department of Economics Working Papers 24-05, Stony Brook University, Department of Economics.
    17. Bangalore, P. & Patriksson, M., 2018. "Analysis of SCADA data for early fault detection, with application to the maintenance management of wind turbines," Renewable Energy, Elsevier, vol. 115(C), pages 521-532.
    18. Chrys Caroni, 2022. "Regression Models for Lifetime Data: An Overview," Stats, MDPI, vol. 5(4), pages 1-11, December.
    19. Worku B. Ewnetu & Irène Gijbels & Anneleen Verhasselt, 2023. "Flexible two-piece distributions for right censored survival data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(1), pages 34-65, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:2:p:460-:d:1036531. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.