IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i5p520-d509125.html
   My bibliography  Save this article

On a Discrete SEIR Epidemic Model with Exposed Infectivity, Feedback Vaccination and Partial Delayed Re-Susceptibility

Author

Listed:
  • Manuel De la Sen

    (Institute of Research and Development of Processes, IIDP, University of the Basque Country, 48080 Biscay, Spain)

  • Santiago Alonso-Quesada

    (Institute of Research and Development of Processes, IIDP, University of the Basque Country, 48080 Biscay, Spain)

  • Asier Ibeas

    (Department of Telecommunications and Systems Engineering, Universitat Autònoma de Barcelona, UAB, 08193 Barcelona, Spain)

Abstract

A new discrete Susceptible-Exposed-Infectious-Recovered (SEIR) epidemic model is proposed, and its properties of non-negativity and (both local and global) asymptotic stability of the solution sequence vector on the first orthant of the state-space are discussed. The calculation of the disease-free and the endemic equilibrium points is also performed. The model has the following main characteristics: (a) the exposed subpopulation is infective, as it is the infectious one, but their respective transmission rates may be distinct; (b) a feedback vaccination control law on the Susceptible is incorporated; and (c) the model is subject to delayed partial re-susceptibility in the sense that a partial immunity loss in the recovered individuals happens after a certain delay. In this way, a portion of formerly recovered individuals along a range of previous samples is incorporated again to the susceptible subpopulation. The rate of loss of partial immunity of the considered range of previous samples may be, in general, distinct for the various samples. It is found that the endemic equilibrium point is not reachable in the transmission rate range of values, which makes the disease-free one to be globally asymptotically stable. The critical transmission rate which confers to only one of the equilibrium points the property of being asymptotically stable (respectively below or beyond its value) is linked to the unity basic reproduction number and makes both equilibrium points to be coincident. In parallel, the endemic equilibrium point is reachable and globally asymptotically stable in the range for which the disease-free equilibrium point is unstable. It is also discussed the relevance of both the vaccination effort and the re-susceptibility level in the modification of the disease-free equilibrium point compared to its reached component values in their absence. The influences of the limit control gain and equilibrium re-susceptibility level in the reached endemic state are also explicitly made viewable for their interpretation from the endemic equilibrium components. Some simulation examples are tested and discussed by using disease parameterizations of COVID-19.

Suggested Citation

  • Manuel De la Sen & Santiago Alonso-Quesada & Asier Ibeas, 2021. "On a Discrete SEIR Epidemic Model with Exposed Infectivity, Feedback Vaccination and Partial Delayed Re-Susceptibility," Mathematics, MDPI, vol. 9(5), pages 1-32, March.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:5:p:520-:d:509125
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/5/520/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/5/520/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cooper, Ian & Mondal, Argha & Antonopoulos, Chris G., 2020. "A SIR model assumption for the spread of COVID-19 in different communities," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    2. Abbasi, Zohreh & Zamani, Iman & Mehra, Amir Hossein Amiri & Shafieirad, Mohsen & Ibeas, Asier, 2020. "Optimal Control Design of Impulsive SQEIAR Epidemic Models with Application to COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    3. Wang, Xinhe & Lu, Junwei & Wang, Zhen & Li, Yuxia, 2020. "Dynamics of discrete epidemic models on heterogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alberto Olivares & Ernesto Staffetti, 2021. "Optimal Control Applied to Vaccination and Testing Policies for COVID-19," Mathematics, MDPI, vol. 9(23), pages 1-22, December.
    2. Mohamed M. Mousa & Fahad Alsharari, 2021. "A Comparative Numerical Study and Stability Analysis for a Fractional-Order SIR Model of Childhood Diseases," Mathematics, MDPI, vol. 9(22), pages 1-12, November.
    3. Talal Daghriri & Michael Proctor & Sarah Matthews, 2022. "Evolution of Select Epidemiological Modeling and the Rise of Population Sentiment Analysis: A Literature Review and COVID-19 Sentiment Illustration," IJERPH, MDPI, vol. 19(6), pages 1-20, March.
    4. Asamoah, Joshua Kiddy K. & Owusu, Mark A. & Jin, Zhen & Oduro, F. T. & Abidemi, Afeez & Gyasi, Esther Opoku, 2020. "Global stability and cost-effectiveness analysis of COVID-19 considering the impact of the environment: using data from Ghana," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    5. Cooper, Ian & Mondal, Argha & Antonopoulos, Chris G., 2020. "Dynamic tracking with model-based forecasting for the spread of the COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    6. Lin William Cong & Ke Tang & Bing Wang & Jingyuan Wang, 2021. "An AI-assisted Economic Model of Endogenous Mobility and Infectious Diseases: The Case of COVID-19 in the United States," Papers 2109.10009, arXiv.org.
    7. Ghanbari, Behzad, 2021. "On detecting chaos in a prey-predator model with prey’s counter-attack on juvenile predators," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    8. Wan, Jinming & Ichinose, Genki & Small, Michael & Sayama, Hiroki & Moreno, Yamir & Cheng, Changqing, 2022. "Multilayer networks with higher-order interaction reveal the impact of collective behavior on epidemic dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    9. Junseok Kim, 2024. "Influence of Fractional Order on the Behavior of a Normalized Time-Fractional SIR Model," Mathematics, MDPI, vol. 12(19), pages 1-9, October.
    10. Miguel Casares & Hashmat Khan, 2020. "The Timing and Intensity of Social Distancing to Flatten the COVID-19 Curve: The Case of Spain," IJERPH, MDPI, vol. 17(19), pages 1-14, October.
    11. Utsumi, Shinobu & Arefin, Md. Rajib & Tatsukawa, Yuichi & Tanimoto, Jun, 2022. "How and to what extent does the anti-social behavior of violating self-quarantine measures increase the spread of disease?," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    12. Aditya Goenka & Lin Liu & Manh-Hung Nguyen, 2021. "Modeling optimal quarantines with waning immunity," Discussion Papers 21-10, Department of Economics, University of Birmingham.
    13. Wu, Yue & Li, Linjiao & Yu, Qiannan & Gan, Jiaxin & Zhang, Yi, 2023. "Strategies for reducing polarization in social networks," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    14. Samuel O. M. Manda & Timotheus Darikwa & Tshifhiwa Nkwenika & Robert Bergquist, 2021. "A Spatial Analysis of COVID-19 in African Countries: Evaluating the Effects of Socio-Economic Vulnerabilities and Neighbouring," IJERPH, MDPI, vol. 18(20), pages 1-15, October.
    15. Guihua Wang, 2022. "Stay at home to stay safe: Effectiveness of stay‐at‐home orders in containing the COVID‐19 pandemic," Production and Operations Management, Production and Operations Management Society, vol. 31(5), pages 2289-2305, May.
    16. Qu, Hongbo & Song, Yu-Rong & Li, Ruqi & Li, Min, 2023. "GNR: A universal and efficient node ranking model for various tasks based on graph neural networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P2).
    17. Lee, Chaeyoung & Kwak, Soobin & Kim, Sangkwon & Hwang, Youngjin & Choi, Yongho & Kim, Junseok, 2021. "Robust optimal parameter estimation for the susceptible-unidentified infected-confirmed model," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    18. Li, Jing & Zhu, Quanxin, 2023. "Event-triggered impulsive control of stochastic functional differential systems," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    19. Rabih Ghostine & Mohamad Gharamti & Sally Hassrouny & Ibrahim Hoteit, 2021. "An Extended SEIR Model with Vaccination for Forecasting the COVID-19 Pandemic in Saudi Arabia Using an Ensemble Kalman Filter," Mathematics, MDPI, vol. 9(6), pages 1-16, March.
    20. Martínez-Guerra, Rafael & Flores-Flores, Juan Pablo, 2021. "An algorithm for the robust estimation of the COVID-19 pandemic’s population by considering undetected individuals," Applied Mathematics and Computation, Elsevier, vol. 405(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:5:p:520-:d:509125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.