IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v166y2023ics0960077922010931.html
   My bibliography  Save this article

An improved epidemiological-unscented Kalman filter (hybrid SEIHCRDV-UKF) model for the prediction of COVID-19. Application on real-time data

Author

Listed:
  • Papageorgiou, Vasileios E.
  • Tsaklidis, George

Abstract

The prevalence of COVID-19 has been the most serious health challenge of the 21th century to date, concerning national health systems on a daily basis, since December 2019 when it appeared in Wuhan City. Nevertheless, most of the proposed mathematical methodologies aiming to describe the dynamics of an epidemic, rely on deterministic models that are not able to reflect the true nature of its spread. In this paper, we propose a SEIHCRDV model – an extension/improvement of the classic SIR compartmental model – which also takes into consideration the populations of exposed, hospitalized, admitted in intensive care units (ICU), deceased and vaccinated cases, in combination with an unscented Kalman filter (UKF), providing a dynamic estimation of the time dependent system's parameters. The stochastic approach is considered necessary, as both observations and system equations are characterized by uncertainties. Apparently, this new consideration is useful for examining various pandemics more effectively. The reliability of the model is examined on the daily recordings of COVID-19 in France, over a long period of 265 days. Two major waves of infection are observed, starting in January 2021, which signified the start of vaccinations in Europe providing quite encouraging predictive performance, based on the produced NRMSE values. Special emphasis is placed on proving the non-negativity of SEIHCRDV model, achieving a representative basic reproductive number R0 and demonstrating the existence and stability of disease equilibria according to the formula produced to estimateR0. The model outperforms in predictive ability not only deterministic approaches but also state-of-the-art stochastic models that employ Kalman filters. Furthermore, the relevant analysis supports the importance of vaccination, as even a small increase in the dialy vaccination rate could lead to a notable reduction in mortality and hospitalizations.

Suggested Citation

  • Papageorgiou, Vasileios E. & Tsaklidis, George, 2023. "An improved epidemiological-unscented Kalman filter (hybrid SEIHCRDV-UKF) model for the prediction of COVID-19. Application on real-time data," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
  • Handle: RePEc:eee:chsofr:v:166:y:2023:i:c:s0960077922010931
    DOI: 10.1016/j.chaos.2022.112914
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922010931
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112914?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luis Rosero-Bixby & Tim Miller, 2022. "The mathematics of the reproduction number R for Covid-19: A primer for demographers," Vienna Yearbook of Population Research, Vienna Institute of Demography (VID) of the Austrian Academy of Sciences in Vienna, vol. 20(1), pages 143-166.
    2. Cooper, Ian & Mondal, Argha & Antonopoulos, Chris G., 2020. "A SIR model assumption for the spread of COVID-19 in different communities," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    3. Ourania Theodosiadou & George Tsaklidis, 2021. "State Space Modeling with Non-Negativity Constraints Using Quadratic Forms," Mathematics, MDPI, vol. 9(16), pages 1-13, August.
    4. Kostas Loumponias & George Tsaklidis, 2022. "Kalman filtering with censored measurements," Journal of Applied Statistics, Taylor & Francis Journals, vol. 49(2), pages 317-335, January.
    5. Malkov, Egor, 2020. "Simulation of coronavirus disease 2019 (COVID-19) scenarios with possibility of reinfection," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    6. Gabriel G Katul & Assaad Mrad & Sara Bonetti & Gabriele Manoli & Anthony J Parolari, 2020. "Global convergence of COVID-19 basic reproduction number and estimation from early-time SIR dynamics," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-22, September.
    7. Song, Jialu & Xie, Hujin & Gao, Bingbing & Zhong, Yongmin & Gu, Chengfan & Choi, Kup-Sze, 2021. "Maximum likelihood-based extended Kalman filter for COVID-19 prediction," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    8. Rajnesh Lal & Weidong Huang & Zhenquan Li, 2021. "An application of the ensemble Kalman filter in epidemiological modelling," PLOS ONE, Public Library of Science, vol. 16(8), pages 1-25, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vasileios E. Papageorgiou & Georgios Vasiliadis & George Tsaklidis, 2023. "Analyzing the Asymptotic Behavior of an Extended SEIR Model with Vaccination for COVID-19," Mathematics, MDPI, vol. 12(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Chaeyoung & Kwak, Soobin & Kim, Sangkwon & Hwang, Youngjin & Choi, Yongho & Kim, Junseok, 2021. "Robust optimal parameter estimation for the susceptible-unidentified infected-confirmed model," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    2. Martínez-Guerra, Rafael & Flores-Flores, Juan Pablo, 2021. "An algorithm for the robust estimation of the COVID-19 pandemic’s population by considering undetected individuals," Applied Mathematics and Computation, Elsevier, vol. 405(C).
    3. Alberto Olivares & Ernesto Staffetti, 2021. "Optimal Control Applied to Vaccination and Testing Policies for COVID-19," Mathematics, MDPI, vol. 9(23), pages 1-22, December.
    4. Mohamed M. Mousa & Fahad Alsharari, 2021. "A Comparative Numerical Study and Stability Analysis for a Fractional-Order SIR Model of Childhood Diseases," Mathematics, MDPI, vol. 9(22), pages 1-12, November.
    5. Talal Daghriri & Michael Proctor & Sarah Matthews, 2022. "Evolution of Select Epidemiological Modeling and the Rise of Population Sentiment Analysis: A Literature Review and COVID-19 Sentiment Illustration," IJERPH, MDPI, vol. 19(6), pages 1-20, March.
    6. Cooper, Ian & Mondal, Argha & Antonopoulos, Chris G., 2020. "Dynamic tracking with model-based forecasting for the spread of the COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    7. Lin William Cong & Ke Tang & Bing Wang & Jingyuan Wang, 2021. "An AI-assisted Economic Model of Endogenous Mobility and Infectious Diseases: The Case of COVID-19 in the United States," Papers 2109.10009, arXiv.org.
    8. Ghanbari, Behzad, 2021. "On detecting chaos in a prey-predator model with prey’s counter-attack on juvenile predators," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    9. Wan, Jinming & Ichinose, Genki & Small, Michael & Sayama, Hiroki & Moreno, Yamir & Cheng, Changqing, 2022. "Multilayer networks with higher-order interaction reveal the impact of collective behavior on epidemic dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    10. Jonas E. Arias & Jesús Fernández-Villaverde & Juan F. Rubio-Ramirez & Minchul Shin, 2021. "Bayesian Estimation of Epidemiological Models: Methods, Causality, and Policy Trade-Offs," Working Papers 21-18, Federal Reserve Bank of Philadelphia.
    11. Miguel Casares & Hashmat Khan, 2020. "The Timing and Intensity of Social Distancing to Flatten the COVID-19 Curve: The Case of Spain," IJERPH, MDPI, vol. 17(19), pages 1-14, October.
    12. Aditya Goenka & Lin Liu & Manh-Hung Nguyen, 2021. "Modeling optimal quarantines with waning immunity," Discussion Papers 21-10, Department of Economics, University of Birmingham.
    13. Mendonça, J.P. & Brum, Arthur A. & Lyra, M.L. & Lira, Sérgio A., 2024. "Evolutionary game dynamics and the phase portrait diversity in a pandemic scenario," Applied Mathematics and Computation, Elsevier, vol. 475(C).
    14. Wu, Yue & Li, Linjiao & Yu, Qiannan & Gan, Jiaxin & Zhang, Yi, 2023. "Strategies for reducing polarization in social networks," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    15. Samuel O. M. Manda & Timotheus Darikwa & Tshifhiwa Nkwenika & Robert Bergquist, 2021. "A Spatial Analysis of COVID-19 in African Countries: Evaluating the Effects of Socio-Economic Vulnerabilities and Neighbouring," IJERPH, MDPI, vol. 18(20), pages 1-15, October.
    16. Guihua Wang, 2022. "Stay at home to stay safe: Effectiveness of stay‐at‐home orders in containing the COVID‐19 pandemic," Production and Operations Management, Production and Operations Management Society, vol. 31(5), pages 2289-2305, May.
    17. Qu, Hongbo & Song, Yu-Rong & Li, Ruqi & Li, Min, 2023. "GNR: A universal and efficient node ranking model for various tasks based on graph neural networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P2).
    18. Ida Johnsson & M. Hashem Pesaran & Cynthia Fan Yang, 2023. "Structural Econometric Estimation of the Basic Reproduction Number for Covid-19 across U.S. States and Selected Countries," CESifo Working Paper Series 10659, CESifo.
    19. Rabih Ghostine & Mohamad Gharamti & Sally Hassrouny & Ibrahim Hoteit, 2021. "An Extended SEIR Model with Vaccination for Forecasting the COVID-19 Pandemic in Saudi Arabia Using an Ensemble Kalman Filter," Mathematics, MDPI, vol. 9(6), pages 1-16, March.
    20. Mat Daud, Auni Aslah, 2021. "Comment on “Poorly known aspects of flattening the curve of COVID-19″," Technological Forecasting and Social Change, Elsevier, vol. 167(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:166:y:2023:i:c:s0960077922010931. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.