IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i17p2076-d623475.html
   My bibliography  Save this article

Extension of SEIR Compartmental Models for Constructive Lyapunov Control of COVID-19 and Analysis in Terms of Practical Stability

Author

Listed:
  • Haiyue Chen

    (Institute of Product and Process Innovation, Leuphana University Lüneburg, Universitätsallee 1, D-21335 Lüneburg, Germany
    These authors contributed equally to this work.)

  • Benedikt Haus

    (Institute of Product and Process Innovation, Leuphana University Lüneburg, Universitätsallee 1, D-21335 Lüneburg, Germany
    These authors contributed equally to this work.)

  • Paolo Mercorelli

    (Institute of Product and Process Innovation, Leuphana University Lüneburg, Universitätsallee 1, D-21335 Lüneburg, Germany
    These authors contributed equally to this work.)

Abstract

Due to the worldwide outbreak of COVID-19, many strategies and models have been put forward by researchers who intend to control the current situation with the given means. In particular, compartmental models are being used to model and analyze the COVID-19 dynamics of different considered populations as Susceptible, Exposed, Infected and Recovered compartments (SEIR). This study derives control-oriented compartmental models of the pandemic, together with constructive control laws based on the Lyapunov theory. The paper presents the derivation of new vaccination and quarantining strategies, found using compartmental models and design methods from the field of Lyapunov theory. The Lyapunov theory offers the possibility to track desired trajectories, guaranteeing the stability of the controlled system. Computer simulations aid to demonstrate the efficacy of the results. Stabilizing control laws are obtained and analyzed for multiple variants of the model. The stability, constructivity, and feasibility are proven for each Lyapunov-like function. Obtaining the proof of practical stability for the controlled system, several interesting system properties such as herd immunity are shown. On the basis of a generalized SEIR model and an extended variant with additional Protected and Quarantined compartments, control strategies are conceived by using two fundamental system inputs, vaccination and quarantine, whose influence on the system is a crucial part of the model. Simulation results prove that Lyapunov-based approaches yield effective control of the disease transmission.

Suggested Citation

  • Haiyue Chen & Benedikt Haus & Paolo Mercorelli, 2021. "Extension of SEIR Compartmental Models for Constructive Lyapunov Control of COVID-19 and Analysis in Terms of Practical Stability," Mathematics, MDPI, vol. 9(17), pages 1-25, August.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:17:p:2076-:d:623475
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/17/2076/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/17/2076/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Memon, Zaibunnisa & Qureshi, Sania & Memon, Bisharat Rasool, 2021. "Assessing the role of quarantine and isolation as control strategies for COVID-19 outbreak: A case study," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    2. Piovella, Nicola, 2020. "Analytical solution of SEIR model describing the free spread of the COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    3. Das, Arghya & Dhar, Abhishek & Goyal, Srashti & Kundu, Anupam & Pandey, Saurav, 2021. "COVID-19: Analytic results for a modified SEIR model and comparison of different intervention strategies," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    4. Zhang, Yong & Yu, Xiangnan & Sun, HongGuang & Tick, Geoffrey R. & Wei, Wei & Jin, Bin, 2020. "Applicability of time fractional derivative models for simulating the dynamics and mitigation scenarios of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    5. Postnikov, Eugene B., 2020. "Estimation of COVID-19 dynamics “on a back-of-envelope”: Does the simplest SIR model provide quantitative parameters and predictions?," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hazem Issa & József K. Tar, 2022. "Improvement of an Adaptive Robot Control by Particle Swarm Optimization-Based Model Identification," Mathematics, MDPI, vol. 10(19), pages 1-21, October.
    2. Alberto Olivares & Ernesto Staffetti, 2021. "Optimal Control Applied to Vaccination and Testing Policies for COVID-19," Mathematics, MDPI, vol. 9(23), pages 1-22, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cooper, Ian & Mondal, Argha & Antonopoulos, Chris G., 2020. "Dynamic tracking with model-based forecasting for the spread of the COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    2. Cooper, Ian & Mondal, Argha & Antonopoulos, Chris G., 2020. "A SIR model assumption for the spread of COVID-19 in different communities," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    3. Yifeng Liu & Yuan Lai, 2024. "Analyzing jogging activity patterns and adaptation to public health regulation," Environment and Planning B, , vol. 51(3), pages 670-688, March.
    4. Nie, Shiqian & Lei, Xiaochun, 2023. "A time-dependent model of the transmission of COVID-19 variants dynamics using Hausdorff fractal derivative," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
    5. Marinca, Bogdan & Marinca, Vasile & Bogdan, Ciprian, 2021. "Dynamics of SEIR epidemic model by optimal auxiliary functions method," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    6. Jahanshahi, Hadi & Munoz-Pacheco, Jesus M. & Bekiros, Stelios & Alotaibi, Naif D., 2021. "A fractional-order SIRD model with time-dependent memory indexes for encompassing the multi-fractional characteristics of the COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    7. Batabyal, Saikat, 2021. "COVID-19: Perturbation dynamics resulting chaos to stable with seasonality transmission," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    8. Jing Zhang & Tong Jin, 2024. "A Stochastic Semi-Parametric SEIR Model with Infectivity in an Incubation Period," Mathematics, MDPI, vol. 12(10), pages 1-14, May.
    9. Junseok Kim, 2024. "Influence of Fractional Order on the Behavior of a Normalized Time-Fractional SIR Model," Mathematics, MDPI, vol. 12(19), pages 1-9, October.
    10. Abboubakar, Hamadjam & Kombou, Lausaire Kemayou & Koko, Adamou Dang & Fouda, Henri Paul Ekobena & Kumar, Anoop, 2021. "Projections and fractional dynamics of the typhoid fever: A case study of Mbandjock in the Centre Region of Cameroon," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    11. Daniele Proverbio & Françoise Kemp & Stefano Magni & Andreas Husch & Atte Aalto & Laurent Mombaerts & Alexander Skupin & Jorge Gonçalves & Jose Ameijeiras-Alonso & Christophe Ley, 2021. "Dynamical SPQEIR model assesses the effectiveness of non-pharmaceutical interventions against COVID-19 epidemic outbreaks," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-21, May.
    12. Zhou, Jiaying & Ye, Yong & Arenas, Alex & Gómez, Sergio & Zhao, Yi, 2023. "Pattern formation and bifurcation analysis of delay induced fractional-order epidemic spreading on networks," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    13. Trikha, Pushali & Mahmoud, Emad E. & Jahanzaib, Lone Seth & Matoog, R.T. & Abdel-Aty, Mahmoud, 2021. "Fractional order biological snap oscillator: Analysis and control," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    14. Bagal, Dilip Kumar & Rath, Arati & Barua, Abhishek & Patnaik, Dulu, 2020. "Estimating the parameters of susceptible-infected-recovered model of COVID-19 cases in India during lockdown periods," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    15. Utsumi, Shinobu & Arefin, Md. Rajib & Tatsukawa, Yuichi & Tanimoto, Jun, 2022. "How and to what extent does the anti-social behavior of violating self-quarantine measures increase the spread of disease?," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    16. Iván Area & Henrique Lorenzo & Pedro J. Marcos & Juan J. Nieto, 2021. "One Year of the COVID-19 Pandemic in Galicia: A Global View of Age-Group Statistics during Three Waves," IJERPH, MDPI, vol. 18(10), pages 1-14, May.
    17. Lee, Chaeyoung & Kwak, Soobin & Kim, Sangkwon & Hwang, Youngjin & Choi, Yongho & Kim, Junseok, 2021. "Robust optimal parameter estimation for the susceptible-unidentified infected-confirmed model," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    18. Javier Cabezas & Daniela Moctezuma & Alberto Fernández-Isabel & Isaac Martín de Diego, 2021. "Detecting Emotional Evolution on Twitter during the COVID-19 Pandemic Using Text Analysis," IJERPH, MDPI, vol. 18(13), pages 1-20, June.
    19. Nathan H. Schumaker & Sydney M. Watkins, 2021. "Adding Space to Disease Models: A Case Study with COVID-19 in Oregon, USA," Land, MDPI, vol. 10(4), pages 1-13, April.
    20. Milad Haghani & Michiel C. J. Bliemer, 2020. "Covid-19 pandemic and the unprecedented mobilisation of scholarly efforts prompted by a health crisis: Scientometric comparisons across SARS, MERS and 2019-nCoV literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2695-2726, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:17:p:2076-:d:623475. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.