IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i12p1372-d574462.html
   My bibliography  Save this article

An Operator-Based Scheme for the Numerical Integration of FDEs

Author

Listed:
  • Inga Timofejeva

    (Center for Nonlinear Systems, Kaunas University of Technology, Studentu, 50-147 Kaunas, Lithuania)

  • Zenonas Navickas

    (Center for Nonlinear Systems, Kaunas University of Technology, Studentu, 50-147 Kaunas, Lithuania)

  • Tadas Telksnys

    (Center for Nonlinear Systems, Kaunas University of Technology, Studentu, 50-147 Kaunas, Lithuania)

  • Romas Marcinkevicius

    (Department of Software Engineering, Kaunas University of Technology, Studentu, 50-415 Kaunas, Lithuania)

  • Minvydas Ragulskis

    (Center for Nonlinear Systems, Kaunas University of Technology, Studentu, 50-147 Kaunas, Lithuania)

Abstract

An operator-based scheme for the numerical integration of fractional differential equations is presented in this paper. The generalized differential operator is used to construct the analytic solution to the corresponding characteristic ordinary differential equation in the form of an infinite power series. The approximate numerical solution is constructed by truncating the power series, and by changing the point of the expansion. The developed adaptive integration step selection strategy is based on the controlled error of approximation induced by the truncation. Computational experiments are used to demonstrate the efficacy of the proposed scheme.

Suggested Citation

  • Inga Timofejeva & Zenonas Navickas & Tadas Telksnys & Romas Marcinkevicius & Minvydas Ragulskis, 2021. "An Operator-Based Scheme for the Numerical Integration of FDEs," Mathematics, MDPI, vol. 9(12), pages 1-17, June.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:12:p:1372-:d:574462
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/12/1372/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/12/1372/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kheybari, Samad, 2021. "Numerical algorithm to Caputo type time–space fractional partial differential equations with variable coefficients," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 66-85.
    2. Acay, Bahar & Inc, Mustafa, 2021. "Fractional modeling of temperature dynamics of a building with singular kernels," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    3. Navickas, Z. & Telksnys, T. & Marcinkevicius, R. & Ragulskis, M., 2017. "Operator-based approach for the construction of analytical soliton solutions to nonlinear fractional-order differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 625-634.
    4. Dubey, Ved Prakash & Dubey, Sarvesh & Kumar, Devendra & Singh, Jagdev, 2021. "A computational study of fractional model of atmospheric dynamics of carbon dioxide gas," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    5. Tarasov, Vasily E., 2020. "Fractional econophysics: Market price dynamics with memory effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    6. H. Jafari & H. Tajadodi, 2010. "He's Variational Iteration Method for Solving Fractional Riccati Differential Equation," International Journal of Differential Equations, Hindawi, vol. 2010, pages 1-8, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumar, Pushpendra & Erturk, Vedat Suat & Murillo-Arcila, Marina, 2021. "A complex fractional mathematical modeling for the love story of Layla and Majnun," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    2. Rubayyi T. Alqahtani & Abdullahi Yusuf & Ravi P. Agarwal, 2021. "Mathematical Analysis of Oxygen Uptake Rate in Continuous Process under Caputo Derivative," Mathematics, MDPI, vol. 9(6), pages 1-19, March.
    3. Ilhan, Esin & Veeresha, P. & Baskonus, Haci Mehmet, 2021. "Fractional approach for a mathematical model of atmospheric dynamics of CO2 gas with an efficient method," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    4. Fathy, Mohamed & Abdelgaber, K.M., 2022. "Approximate solutions for the fractional order quadratic Riccati and Bagley-Torvik differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    5. Aktaev, Nurken E. & Bannova, K.A., 2022. "Mathematical modeling of probability distribution of money by means of potential formation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 595(C).
    6. Lyudmila Gadasina & Lyudmila Vyunenko, 2022. "Applying spline-based phase analysis to macroeconomic dynamics," Dependence Modeling, De Gruyter, vol. 10(1), pages 207-214, January.
    7. Li, Yi Xia & Alshehri, Maryam G. & Algehyne, Ebrahem A. & Ali, Aatif & Khan, Muhammad Altaf & Muhammad, Taseer & Islam, Saeed, 2021. "Fractional study of Huanglongbing model with singular and non- singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    8. Akgül, Esra Karatas & Akgül, Ali & Yavuz, Mehmet, 2021. "New Illustrative Applications of Integral Transforms to Financial Models with Different Fractional Derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    9. Shah, Kamal & Arfan, Muhammad & Ullah, Aman & Al-Mdallal, Qasem & Ansari, Khursheed J. & Abdeljawad, Thabet, 2022. "Computational study on the dynamics of fractional order differential equations with applications," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    10. Dubey, Ved Prakash & Singh, Jagdev & Alshehri, Ahmed M. & Dubey, Sarvesh & Kumar, Devendra, 2022. "Forecasting the behavior of fractional order Bloch equations appearing in NMR flow via a hybrid computational technique," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    11. Dubey, Ved Prakash & Singh, Jagdev & Alshehri, Ahmed M. & Dubey, Sarvesh & Kumar, Devendra, 2022. "An efficient analytical scheme with convergence analysis for computational study of local fractional Schrödinger equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 196(C), pages 296-318.
    12. Vasily E. Tarasov, 2020. "Non-Linear Macroeconomic Models of Growth with Memory," Mathematics, MDPI, vol. 8(11), pages 1-22, November.
    13. Daniele Mortari & Roberto Garrappa & Luigi Nicolò, 2023. "Theory of Functional Connections Extended to Fractional Operators," Mathematics, MDPI, vol. 11(7), pages 1-18, April.
    14. Vasily E. Tarasov, 2024. "General Fractional Economic Dynamics with Memory," Mathematics, MDPI, vol. 12(15), pages 1-24, August.
    15. Borin, Daniel, 2024. "Caputo fractional standard map: Scaling invariance analyses," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    16. Maryam Alkandari & Yuri Luchko, 2024. "Operational Calculus for the 1st-Level General Fractional Derivatives and Its Applications," Mathematics, MDPI, vol. 12(17), pages 1-23, August.
    17. Sakiru, Solarin Adebola & Gil-Alana, Luis A. & Gonzalez-Blanch, Maria Jesus, 2022. "Persistence of economic complexity in OECD countries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:12:p:1372-:d:574462. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.