IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v142y2021ics0960077920307694.html
   My bibliography  Save this article

A computational study of fractional model of atmospheric dynamics of carbon dioxide gas

Author

Listed:
  • Dubey, Ved Prakash
  • Dubey, Sarvesh
  • Kumar, Devendra
  • Singh, Jagdev

Abstract

In this paper, a fractional order nonlinear mathematical model describing the dynamics of atmospheric concentration of CO2 is investigated and studied through the application of a semi-analytical homotopy scheme combined with Sumudu transform and homotopy polynomials. This study examines the consequences of the variations of forest biomass and human population on the dynamics of the concentration of CO2 gas in the atmosphere. The Caputo fractional derivatives are engaged in this study. The computational work shows that the evaluated iterative terms are adequate for the refined approximations of the solutions for a fractional model of dynamics of atmospheric concentration of CO2, and thus authenticate the computational strength of the employed scheme. The variational behavior of concentration of CO2, forest biomass, and human population are demonstrated through the graphical presentation regarding the changing values of fractional order derivatives and time t. Moreover, this study also examines the analysis of obtained solutions for a fractional model in view of uniqueness and convergence.

Suggested Citation

  • Dubey, Ved Prakash & Dubey, Sarvesh & Kumar, Devendra & Singh, Jagdev, 2021. "A computational study of fractional model of atmospheric dynamics of carbon dioxide gas," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
  • Handle: RePEc:eee:chsofr:v:142:y:2021:i:c:s0960077920307694
    DOI: 10.1016/j.chaos.2020.110375
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920307694
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110375?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. H. M. Srivastava & Alireza Khalili Golmankhaneh & Dumitru Baleanu & Xiao-Jun Yang, 2014. "Local Fractional Sumudu Transform with Application to IVPs on Cantor Sets," Abstract and Applied Analysis, Hindawi, vol. 2014, pages 1-7, May.
    2. Kai Liu & Ren-Jie Hu & Carlo Cattani & Gong-Nan Xie & Xiao-Jun Yang & Yang Zhao, 2014. "Local Fractional -Transforms with Applications to Signals on Cantor Sets," Abstract and Applied Analysis, Hindawi, vol. 2014, pages 1-6, March.
    3. Yavuz, Mehmet & Bonyah, Ebenezer, 2019. "New approaches to the fractional dynamics of schistosomiasis disease model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 373-393.
    4. Jagdev Singh & Devendra Kumar & A. Kılıçman, 2013. "Homotopy Perturbation Method for Fractional Gas Dynamics Equation Using Sumudu Transform," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-8, February.
    5. Devendra Kumar & Jagdev Singh & A. Kılıçman, 2013. "An Efficient Approach for Fractional Harry Dym Equation by Using Sumudu Transform," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-8, May.
    6. Saad, Khaled M. & Srivastava, H.M. & Gómez-Aguilar, J.F., 2020. "A Fractional Quadratic autocatalysis associated with chemical clock reactions involving linear inhibition," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    7. Atangana, Abdon & Gómez-Aguilar, J.F., 2017. "A new derivative with normal distribution kernel: Theory, methods and applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 476(C), pages 1-14.
    8. Caetano, Marco Antonio Leonel & Gherardi, Douglas Francisco Marcolino & Yoneyama, Takashi, 2011. "An optimized policy for the reduction of CO2 emission in the Brazilian Legal Amazon," Ecological Modelling, Elsevier, vol. 222(15), pages 2835-2840.
    9. Fethi Bin Muhammed Belgacem & Ahmed Abdullatif Karaballi, 2006. "Sumudu transform fundamental properties investigations and applications," International Journal of Stochastic Analysis, Hindawi, vol. 2006, pages 1-23, May.
    10. Atangana, Abdon & Gómez-Aguilar, J.F., 2018. "Fractional derivatives with no-index law property: Application to chaos and statistics," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 516-535.
    11. Bhatter, Sanjay & Mathur, Amit & Kumar, Devendra & Singh, Jagdev, 2020. "A new analysis of fractional Drinfeld–Sokolov–Wilson model with exponential memory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    12. Alexiadis, Alessio, 2007. "Global warming and human activity: A model for studying the potential instability of the carbon dioxide/temperature feedback mechanism," Ecological Modelling, Elsevier, vol. 203(3), pages 243-256.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Inga Timofejeva & Zenonas Navickas & Tadas Telksnys & Romas Marcinkevicius & Minvydas Ragulskis, 2021. "An Operator-Based Scheme for the Numerical Integration of FDEs," Mathematics, MDPI, vol. 9(12), pages 1-17, June.
    2. Li, Yi Xia & Alshehri, Maryam G. & Algehyne, Ebrahem A. & Ali, Aatif & Khan, Muhammad Altaf & Muhammad, Taseer & Islam, Saeed, 2021. "Fractional study of Huanglongbing model with singular and non- singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    3. Ilhan, Esin & Veeresha, P. & Baskonus, Haci Mehmet, 2021. "Fractional approach for a mathematical model of atmospheric dynamics of CO2 gas with an efficient method," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    4. Akgül, Esra Karatas & Akgül, Ali & Yavuz, Mehmet, 2021. "New Illustrative Applications of Integral Transforms to Financial Models with Different Fractional Derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    5. Shah, Kamal & Arfan, Muhammad & Ullah, Aman & Al-Mdallal, Qasem & Ansari, Khursheed J. & Abdeljawad, Thabet, 2022. "Computational study on the dynamics of fractional order differential equations with applications," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    6. Dubey, Ved Prakash & Singh, Jagdev & Alshehri, Ahmed M. & Dubey, Sarvesh & Kumar, Devendra, 2022. "Forecasting the behavior of fractional order Bloch equations appearing in NMR flow via a hybrid computational technique," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    7. Dubey, Ved Prakash & Singh, Jagdev & Alshehri, Ahmed M. & Dubey, Sarvesh & Kumar, Devendra, 2022. "An efficient analytical scheme with convergence analysis for computational study of local fractional Schrödinger equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 196(C), pages 296-318.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Srivastava, H.M. & Dubey, V.P. & Kumar, R. & Singh, J. & Kumar, D. & Baleanu, D., 2020. "An efficient computational approach for a fractional-order biological population model with carrying capacity," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    2. Singh, C.S. & Singh, Harendra & Singh, Somveer & Kumar, Devendra, 2019. "An efficient computational method for solving system of nonlinear generalized Abel integral equations arising in astrophysics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1440-1448.
    3. Zeid, Samaneh Soradi, 2019. "Approximation methods for solving fractional equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 171-193.
    4. Singh, Jagdev, 2020. "Analysis of fractional blood alcohol model with composite fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    5. Owolabi, Kolade M., 2019. "Mathematical modelling and analysis of love dynamics: A fractional approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 849-865.
    6. Pang, Denghao & Jiang, Wei & Liu, Song & Jun, Du, 2019. "Stability analysis for a single degree of freedom fractional oscillator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 498-506.
    7. Al-khedhairi, A. & Elsadany, A.A. & Elsonbaty, A., 2019. "Modelling immune systems based on Atangana–Baleanu fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 25-39.
    8. Kumar, Sachin & Pandey, Prashant, 2020. "A Legendre spectral finite difference method for the solution of non-linear space-time fractional Burger’s–Huxley and reaction-diffusion equation with Atangana–Baleanu derivative," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    9. Ghanbari, Behzad & Günerhan, Hatıra & Srivastava, H.M., 2020. "An application of the Atangana-Baleanu fractional derivative in mathematical biology: A three-species predator-prey model," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    10. Yavuz, Mehmet & Bonyah, Ebenezer, 2019. "New approaches to the fractional dynamics of schistosomiasis disease model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 373-393.
    11. Khennaoui, Amina-Aicha & Ouannas, Adel & Bendoukha, Samir & Grassi, Giuseppe & Lozi, René Pierre & Pham, Viet-Thanh, 2019. "On fractional–order discrete–time systems: Chaos, stabilization and synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 150-162.
    12. Ma, Chaoqun & Ma, Zonggang & Xiao, Shisong, 2019. "A closed-form pricing formula for vulnerable European options under stochastic yield spreads and interest rates," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 59-68.
    13. Akgül, Esra Karatas & Akgül, Ali & Yavuz, Mehmet, 2021. "New Illustrative Applications of Integral Transforms to Financial Models with Different Fractional Derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    14. Shah, Syed Azhar Ali & Khan, Muhammad Altaf & Farooq, Muhammad & Ullah, Saif & Alzahrani, Ebraheem O., 2020. "A fractional order model for Hepatitis B virus with treatment via Atangana–Baleanu derivative," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    15. Dubey, Ved Prakash & Singh, Jagdev & Alshehri, Ahmed M. & Dubey, Sarvesh & Kumar, Devendra, 2022. "Forecasting the behavior of fractional order Bloch equations appearing in NMR flow via a hybrid computational technique," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    16. Dubey, Ved Prakash & Singh, Jagdev & Alshehri, Ahmed M. & Dubey, Sarvesh & Kumar, Devendra, 2022. "An efficient analytical scheme with convergence analysis for computational study of local fractional Schrödinger equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 196(C), pages 296-318.
    17. Feng, Yi-Ying & Yang, Xiao-Jun & Liu, Jian-Gen & Chen, Zhan-Qing, 2023. "Mechanical investigations of local fractional magnetorheological elastomers model on Cantor sets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 621(C).
    18. Owolabi, Kolade M. & Pindza, Edson, 2019. "Modeling and simulation of nonlinear dynamical system in the frame of nonlocal and non-singular derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 146-157.
    19. Kritika, & Agarwal, Ritu & Purohit, Sunil Dutt, 2020. "Mathematical model for anomalous subdiffusion using comformable operator," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    20. Pritam, Kocherlakota Satya & Sugandha, & Mathur, Trilok & Agarwal, Shivi, 2021. "Underlying dynamics of crime transmission with memory," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:142:y:2021:i:c:s0960077920307694. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.