Operational Calculus for the 1st-Level General Fractional Derivatives and Its Applications
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Fahad, Hafiz Muhammad & Fernandez, Arran, 2021. "Operational calculus for Caputo fractional calculus with respect to functions and the associated fractional differential equations," Applied Mathematics and Computation, Elsevier, vol. 409(C).
- Vasily E. Tarasov, 2022. "General Non-Local Continuum Mechanics: Derivation of Balance Equations," Mathematics, MDPI, vol. 10(9), pages 1-43, April.
- Stefan G. Samko & Rogério P. Cardoso, 2003. "Integral equations of the first kind of Sonine type," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2003, pages 1-24, January.
- Anatoly N. Kochubei & Yuri Kondratiev, 2019. "Growth Equation of the General Fractional Calculus," Mathematics, MDPI, vol. 7(7), pages 1-8, July.
- Tarasov, Vasily E., 2020. "Fractional econophysics: Market price dynamics with memory effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
- Vasily E. Tarasov, 2022. "Nonlocal Probability Theory: General Fractional Calculus Approach," Mathematics, MDPI, vol. 10(20), pages 1-82, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mohammed Al-Refai & Yuri Luchko, 2023. "The General Fractional Integrals and Derivatives on a Finite Interval," Mathematics, MDPI, vol. 11(4), pages 1-13, February.
- Vasily E. Tarasov, 2023. "Multi-Kernel General Fractional Calculus of Arbitrary Order," Mathematics, MDPI, vol. 11(7), pages 1-32, April.
- Tarasov, Vasily E., 2023. "Nonlocal statistical mechanics: General fractional Liouville equations and their solutions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
- Vasily E. Tarasov, 2024. "General Fractional Economic Dynamics with Memory," Mathematics, MDPI, vol. 12(15), pages 1-24, August.
- Yuri Luchko, 2022. "Fractional Differential Equations with the General Fractional Derivatives of Arbitrary Order in the Riemann–Liouville Sense," Mathematics, MDPI, vol. 10(6), pages 1-24, March.
- Vasily E. Tarasov, 2023. "General Fractional Calculus in Multi-Dimensional Space: Riesz Form," Mathematics, MDPI, vol. 11(7), pages 1-20, March.
- Vasily E. Tarasov, 2023. "General Fractional Noether Theorem and Non-Holonomic Action Principle," Mathematics, MDPI, vol. 11(20), pages 1-35, October.
- Vasily E. Tarasov, 2021. "General Fractional Calculus: Multi-Kernel Approach," Mathematics, MDPI, vol. 9(13), pages 1-14, June.
- Aktaev, Nurken E. & Bannova, K.A., 2022. "Mathematical modeling of probability distribution of money by means of potential formation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 595(C).
- Inga Timofejeva & Zenonas Navickas & Tadas Telksnys & Romas Marcinkevicius & Minvydas Ragulskis, 2021. "An Operator-Based Scheme for the Numerical Integration of FDEs," Mathematics, MDPI, vol. 9(12), pages 1-17, June.
- Giacomo Ascione & Nikolai Leonenko & Enrica Pirozzi, 2022. "Non-local Solvable Birth–Death Processes," Journal of Theoretical Probability, Springer, vol. 35(2), pages 1284-1323, June.
- Anatoliy Martynyuk & Gani Stamov & Ivanka Stamova & Ekaterina Gospodinova, 2023. "Formulation of Impulsive Ecological Systems Using the Conformable Calculus Approach: Qualitative Analysis," Mathematics, MDPI, vol. 11(10), pages 1-15, May.
- Lyudmila Gadasina & Lyudmila Vyunenko, 2022. "Applying spline-based phase analysis to macroeconomic dynamics," Dependence Modeling, De Gruyter, vol. 10(1), pages 207-214, January.
- Vasily E. Tarasov & Svetlana S. Tarasova, 2020. "Fractional Derivatives and Integrals: What Are They Needed For?," Mathematics, MDPI, vol. 8(2), pages 1-22, January.
- Sergei Rogosin & Maryna Dubatovskaya, 2021. "Fractional Calculus in Russia at the End of XIX Century," Mathematics, MDPI, vol. 9(15), pages 1-16, July.
- Giacomo Ascione & Enrica Pirozzi, 2021. "Generalized Fractional Calculus for Gompertz-Type Models," Mathematics, MDPI, vol. 9(17), pages 1-32, September.
- Vasily E. Tarasov, 2021. "General Fractional Vector Calculus," Mathematics, MDPI, vol. 9(21), pages 1-87, November.
- Vasily E. Tarasov, 2021. "General Fractional Dynamics," Mathematics, MDPI, vol. 9(13), pages 1-26, June.
- Yuri Luchko, 2021. "Special Functions of Fractional Calculus in the Form of Convolution Series and Their Applications," Mathematics, MDPI, vol. 9(17), pages 1-15, September.
- Vasily E. Tarasov, 2020. "Non-Linear Macroeconomic Models of Growth with Memory," Mathematics, MDPI, vol. 8(11), pages 1-22, November.
More about this item
Keywords
fractional calculus; 1st-level general fractional derivative; fundamental theorems of fractional calculus; operational calculus; convolution series; fractional differential equations;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:17:p:2626-:d:1463213. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.