IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i15p2411-d1449011.html
   My bibliography  Save this article

General Fractional Economic Dynamics with Memory

Author

Listed:
  • Vasily E. Tarasov

    (Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow 119991, Russia
    Department of Physics, 915, Moscow Aviation Institute, National Research University, Moscow 125993, Russia)

Abstract

For the first time, a self-consistent mathematical approach to describe economic processes with a general form of a memory function is proposed. In this approach, power-type memory is a special case of such general memory. The memory is described by pairs of memory functions that satisfy the Sonin and Luchko conditions. We propose using general fractional calculus (GFC) as a mathematical language that allows us to describe a general form of memory in economic processes. The existence of memory (non-locality in time) means that the process depends on the history of changes to this process in the past. Using GFC, exactly solvable economic models of natural growth with a general form of memory are proposed. Equations of natural growth with general memory are equations with general fractional derivatives and general fractional integrals for which the fundamental theorems of GFC are satisfied. Exact solutions for these equations of models of natural growth with general memory are derived. The properties of dynamic maps with a general form of memory are described in the general form and do not depend on the choice of specific types of memory functions. Examples of these solutions for various types of memory functions are suggested.

Suggested Citation

  • Vasily E. Tarasov, 2024. "General Fractional Economic Dynamics with Memory," Mathematics, MDPI, vol. 12(15), pages 1-24, August.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:15:p:2411-:d:1449011
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/15/2411/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/15/2411/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rudolf Hilfer & Yuri Luchko, 2019. "Desiderata for Fractional Derivatives and Integrals," Mathematics, MDPI, vol. 7(2), pages 1-5, February.
    2. Sadeghi, Amir & Cardoso, João R., 2018. "Some notes on properties of the matrix Mittag-Leffler function," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 733-738.
    3. Vasily E. Tarasov, 2022. "General Non-Local Continuum Mechanics: Derivation of Balance Equations," Mathematics, MDPI, vol. 10(9), pages 1-43, April.
    4. Banerjee, Anindya & Urga, Giovanni, 2005. "Modelling structural breaks, long memory and stock market volatility: an overview," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 1-34.
    5. Vasily E. Tarasov, 2019. "Rules for Fractional-Dynamic Generalizations: Difficulties of Constructing Fractional Dynamic Models," Mathematics, MDPI, vol. 7(6), pages 1-50, June.
    6. Vasily E. Tarasov, 2021. "General Fractional Vector Calculus," Mathematics, MDPI, vol. 9(21), pages 1-87, November.
    7. Tarasov, Vasily E., 2023. "Nonlocal statistical mechanics: General fractional Liouville equations and their solutions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    8. Mohammed Al-Refai & Yuri Luchko, 2023. "The General Fractional Integrals and Derivatives on a Finite Interval," Mathematics, MDPI, vol. 11(4), pages 1-13, February.
    9. Vasily E. Tarasov, 2022. "Nonlocal Probability Theory: General Fractional Calculus Approach," Mathematics, MDPI, vol. 10(20), pages 1-82, October.
    10. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    11. Maryam Al-Kandari & Latif A-M. Hanna & Yuri Luchko, 2022. "Operational Calculus for the General Fractional Derivatives of Arbitrary Order," Mathematics, MDPI, vol. 10(9), pages 1-17, May.
    12. Vasily E. Tarasov, 2021. "General Fractional Calculus: Multi-Kernel Approach," Mathematics, MDPI, vol. 9(13), pages 1-14, June.
    13. Stefan G. Samko & Rogério P. Cardoso, 2003. "Integral equations of the first kind of Sonine type," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2003, pages 1-24, January.
    14. Vasily E. Tarasov, 2019. "On History of Mathematical Economics: Application of Fractional Calculus," Mathematics, MDPI, vol. 7(6), pages 1-28, June.
    15. Vasily E. Tarasov, 2020. "Mathematical Economics: Application of Fractional Calculus," Mathematics, MDPI, vol. 8(5), pages 1-3, April.
    16. Yuri Luchko, 2021. "General Fractional Integrals and Derivatives with the Sonine Kernels," Mathematics, MDPI, vol. 9(6), pages 1-17, March.
    17. Tarasov, Vasily E., 2020. "Fractional econophysics: Market price dynamics with memory effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    18. William R. Parke, 1999. "What Is Fractional Integration?," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 632-638, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vasily E. Tarasov, 2023. "General Fractional Calculus in Multi-Dimensional Space: Riesz Form," Mathematics, MDPI, vol. 11(7), pages 1-20, March.
    2. Vasily E. Tarasov, 2023. "Multi-Kernel General Fractional Calculus of Arbitrary Order," Mathematics, MDPI, vol. 11(7), pages 1-32, April.
    3. Vasily E. Tarasov, 2023. "General Fractional Noether Theorem and Non-Holonomic Action Principle," Mathematics, MDPI, vol. 11(20), pages 1-35, October.
    4. Vasily E. Tarasov, 2020. "Non-Linear Macroeconomic Models of Growth with Memory," Mathematics, MDPI, vol. 8(11), pages 1-22, November.
    5. Mohammed Al-Refai & Yuri Luchko, 2023. "The General Fractional Integrals and Derivatives on a Finite Interval," Mathematics, MDPI, vol. 11(4), pages 1-13, February.
    6. Tarasov, Vasily E., 2023. "Nonlocal statistical mechanics: General fractional Liouville equations and their solutions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    7. Yuri Luchko, 2022. "Fractional Differential Equations with the General Fractional Derivatives of Arbitrary Order in the Riemann–Liouville Sense," Mathematics, MDPI, vol. 10(6), pages 1-24, March.
    8. Maryam Alkandari & Yuri Luchko, 2024. "Operational Calculus for the 1st-Level General Fractional Derivatives and Its Applications," Mathematics, MDPI, vol. 12(17), pages 1-23, August.
    9. Vasily E. Tarasov & Valentina V. Tarasova, 2016. "Long and Short Memory in Economics: Fractional-Order Difference and Differentiation," Papers 1612.07903, arXiv.org, revised Aug 2017.
    10. Vasily E. Tarasov, 2019. "On History of Mathematical Economics: Application of Fractional Calculus," Mathematics, MDPI, vol. 7(6), pages 1-28, June.
    11. Vasily E. Tarasov, 2021. "General Fractional Vector Calculus," Mathematics, MDPI, vol. 9(21), pages 1-87, November.
    12. Laura Mayoral, 2006. "Further Evidence on the Statistical Properties of Real GNP," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 68(s1), pages 901-920, December.
    13. Valentina V. Tarasova & Vasily E. Tarasov, 2017. "Concept of dynamic memory in economics," Papers 1712.09088, arXiv.org.
    14. Borin, Daniel, 2024. "Caputo fractional standard map: Scaling invariance analyses," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    15. Vasily E. Tarasov, 2020. "Exact Solutions of Bernoulli and Logistic Fractional Differential Equations with Power Law Coefficients," Mathematics, MDPI, vol. 8(12), pages 1-11, December.
    16. Pierre Perron & Zhongjun Qu, 2007. "An Analytical Evaluation of the Log-periodogram Estimate in the Presence of Level Shifts," Boston University - Department of Economics - Working Papers Series wp2007-044, Boston University - Department of Economics.
    17. Christos Christodoulou-Volos & Fotios Siokis, 2006. "Long range dependence in stock market returns," Applied Financial Economics, Taylor & Francis Journals, vol. 16(18), pages 1331-1338.
    18. Juan J. Dolado & Jesús Gonzalo & Laura Mayoral, 2005. "What is What? A Simple Time-Domain Test of Long-memory vs. Structural Breaks," Working Papers 258, Barcelona School of Economics.
    19. Perron, Pierre & Qu, Zhongjun, 2010. "Long-Memory and Level Shifts in the Volatility of Stock Market Return Indices," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(2), pages 275-290.
    20. repec:bla:jecsur:v:22:y:2008:i:4:p:711-751 is not listed on IDEAS
    21. Christian Fischer & Luis Alberiko Gil-Alana, 2005. "The Nature of the Relationship between International Tourism and International Trade: The Case of Ge," Faculty Working Papers 15/05, School of Economics and Business Administration, University of Navarra.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:15:p:2411-:d:1449011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.