IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v164y2022ics0960077922008700.html
   My bibliography  Save this article

Forecasting the behavior of fractional order Bloch equations appearing in NMR flow via a hybrid computational technique

Author

Listed:
  • Dubey, Ved Prakash
  • Singh, Jagdev
  • Alshehri, Ahmed M.
  • Dubey, Sarvesh
  • Kumar, Devendra

Abstract

In this paper, we present an efficient computational approach named as Sumudu residual power series method (SRPSM) to solve fractional Bloch equations appearing in an NMR flow. This method is a copulation of the residual power series method (RPSM) and the Sumudu transform to construct approximate solution in shapes of sharp convergent series by adopting the notion of limit with a view of smooth calculations and time saving strategy as compared to the classical RPSM in which computations of fractional derivatives are required. This work also verifies and compares the solution obtained by the proposed technique with the classical RPSM. To assure the applicability, performance, and reliability of the introduced method, a system of fractional Bloch equations are examined along with numerical simulations. The aspect of application supported with computer simulations demonstrates that the suggested approach is precise, and appropriate to explore the solutions of linear & nonlinear initial value problems with fractional-order derivatives.

Suggested Citation

  • Dubey, Ved Prakash & Singh, Jagdev & Alshehri, Ahmed M. & Dubey, Sarvesh & Kumar, Devendra, 2022. "Forecasting the behavior of fractional order Bloch equations appearing in NMR flow via a hybrid computational technique," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
  • Handle: RePEc:eee:chsofr:v:164:y:2022:i:c:s0960077922008700
    DOI: 10.1016/j.chaos.2022.112691
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922008700
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112691?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Omar Abu Arqub & Ahmad El-Ajou & A. Sami Bataineh & I. Hashim, 2013. "A Representation of the Exact Solution of Generalized Lane-Emden Equations Using a New Analytical Method," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-10, July.
    2. H. M. Srivastava & Alireza Khalili Golmankhaneh & Dumitru Baleanu & Xiao-Jun Yang, 2014. "Local Fractional Sumudu Transform with Application to IVPs on Cantor Sets," Abstract and Applied Analysis, Hindawi, vol. 2014, pages 1-7, May.
    3. Srivastava, H.M. & Dubey, V.P. & Kumar, R. & Singh, J. & Kumar, D. & Baleanu, D., 2020. "An efficient computational approach for a fractional-order biological population model with carrying capacity," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    4. El-Ajou, Ahmad & Abu Arqub, Omar & Momani, Shaher & Baleanu, Dumitru & Alsaedi, Ahmed, 2015. "A novel expansion iterative method for solving linear partial differential equations of fractional order," Applied Mathematics and Computation, Elsevier, vol. 257(C), pages 119-133.
    5. Eriqat, Tareq & El-Ajou, Ahmad & Oqielat, Moa'ath N. & Al-Zhour, Zeyad & Momani, Shaher, 2020. "A New Attractive Analytic Approach for Solutions of Linear and Nonlinear Neutral Fractional Pantograph Equations," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    6. Fethi Bin Muhammed Belgacem & Ahmed Abdullatif Karaballi, 2006. "Sumudu transform fundamental properties investigations and applications," International Journal of Stochastic Analysis, Hindawi, vol. 2006, pages 1-23, May.
    7. Dubey, Ved Prakash & Kumar, Rajnesh & Kumar, Devendra, 2019. "A reliable treatment of residual power series method for time-fractional Black–Scholes European option pricing equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 533(C).
    8. Omar Abu Arqub & Zaer Abo-Hammour & Ramzi Al-Badarneh & Shaher Momani, 2013. "A Reliable Analytical Method for Solving Higher-Order Initial Value Problems," Discrete Dynamics in Nature and Society, Hindawi, vol. 2013, pages 1-12, December.
    9. Dubey, Ved Prakash & Dubey, Sarvesh & Kumar, Devendra & Singh, Jagdev, 2021. "A computational study of fractional model of atmospheric dynamics of carbon dioxide gas," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rao, Anjali & Vats, Ramesh Kumar & Yadav, Sanjeev, 2024. "Numerical study of nonlinear time-fractional Caudrey–Dodd–Gibbon–Sawada–Kotera equation arising in propagation of waves," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dubey, Ved Prakash & Singh, Jagdev & Alshehri, Ahmed M. & Dubey, Sarvesh & Kumar, Devendra, 2022. "An efficient analytical scheme with convergence analysis for computational study of local fractional Schrödinger equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 196(C), pages 296-318.
    2. Khirsariya, Sagar R. & Chauhan, Jignesh P. & Rao, Snehal B., 2024. "A robust computational analysis of residual power series involving general transform to solve fractional differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 216(C), pages 168-186.
    3. Samir A. El-Tantawy & Rasool Shah & Albandari W. Alrowaily & Nehad Ali Shah & Jae Dong Chung & Sherif. M. E. Ismaeel, 2023. "A Comparative Study of the Fractional-Order Belousov–Zhabotinsky System," Mathematics, MDPI, vol. 11(7), pages 1-15, April.
    4. Srivastava, H.M. & Dubey, V.P. & Kumar, R. & Singh, J. & Kumar, D. & Baleanu, D., 2020. "An efficient computational approach for a fractional-order biological population model with carrying capacity," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    5. Dubey, Ved Prakash & Dubey, Sarvesh & Kumar, Devendra & Singh, Jagdev, 2021. "A computational study of fractional model of atmospheric dynamics of carbon dioxide gas," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    6. Rao, Anjali & Vats, Ramesh Kumar & Yadav, Sanjeev, 2024. "Numerical study of nonlinear time-fractional Caudrey–Dodd–Gibbon–Sawada–Kotera equation arising in propagation of waves," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    7. Akgül, Esra Karatas & Akgül, Ali & Yavuz, Mehmet, 2021. "New Illustrative Applications of Integral Transforms to Financial Models with Different Fractional Derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    8. Mohammed Shqair & Ahmad El-Ajou & Mazen Nairat, 2019. "Analytical Solution for Multi-Energy Groups of Neutron Diffusion Equations by a Residual Power Series Method," Mathematics, MDPI, vol. 7(7), pages 1-20, July.
    9. Musrrat Ali & Hemant Gandhi & Amit Tomar & Dimple Singh, 2023. "Similarity Solution for a System of Fractional-Order Coupled Nonlinear Hirota Equations with Conservation Laws," Mathematics, MDPI, vol. 11(11), pages 1-14, May.
    10. Prakash, Amit & Kaur, Hardish, 2021. "Analysis and numerical simulation of fractional Biswas–Milovic model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 298-315.
    11. Zhao, Dazhi & Yu, Guozhu & Tian, Yan, 2020. "Recursive formulae for the analytic solution of the nonlinear spatial conformable fractional evolution equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    12. Ilhan, Esin & Veeresha, P. & Baskonus, Haci Mehmet, 2021. "Fractional approach for a mathematical model of atmospheric dynamics of CO2 gas with an efficient method," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    13. Muhammed I. Syam, 2017. "Analytical Solution of the Fractional Fredholm Integrodifferential Equation Using the Fractional Residual Power Series Method," Complexity, Hindawi, vol. 2017, pages 1-6, August.
    14. Liaqat, Muhammad Imran & Akgül, Ali, 2022. "A novel approach for solving linear and nonlinear time-fractional Schrödinger equations," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    15. Bezziou, Mohamed & Jebril, Iqbal & Dahmani, Zoubir, 2021. "A new nonlinear duffing system with sequential fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    16. Mamta Kapoor & Nehad Ali Shah & Salman Saleem & Wajaree Weera, 2022. "An Analytical Approach for Fractional Hyperbolic Telegraph Equation Using Shehu Transform in One, Two and Three Dimensions," Mathematics, MDPI, vol. 10(12), pages 1-26, June.
    17. Izadi, Mohammad & Srivastava, H.M., 2021. "Numerical approximations to the nonlinear fractional-order Logistic population model with fractional-order Bessel and Legendre bases," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    18. Attia, Nourhane & Akgül, Ali & Seba, Djamila & Nour, Abdelkader, 2020. "An efficient numerical technique for a biological population model of fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    19. Inga Timofejeva & Zenonas Navickas & Tadas Telksnys & Romas Marcinkevicius & Minvydas Ragulskis, 2021. "An Operator-Based Scheme for the Numerical Integration of FDEs," Mathematics, MDPI, vol. 9(12), pages 1-17, June.
    20. Singh, Jagdev, 2020. "Analysis of fractional blood alcohol model with composite fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:164:y:2022:i:c:s0960077922008700. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.